

Lecture 11

Arterial BP

•Red: important

- •Black: in male / female slides
- Pink: in female slides only
- •Blue: in male slides only
- •Gray: extra information Editing file

Arterial BP :

It's the pressure/force exerted by the blood against any unit area of the vessel wall, this force keeps the blood circulating continuously even between heart beats.

Pressure changes throughout systemic circulation:

Range & Variations In Arterial BP Levels:

Arterial pressure is pulsatile.

- Aortic pressure: <u>120 systolic</u> mmHg 80 diastolic
- Average normal arterial pressure:

90 to 120 systolic 60 to 80 diastolic mmHg

JNC 7 BP classification in adults aged \geq 18 years						
Category	Systolic	Diastolic				
Normal	<120 < 130	and	< 85 <80			
Prehypertension	120-139 130- >140	or	85- <90 80-89			
Hypertension (stage 1)	140-159	or	90-99			
Hypertension (stage 2)	≥160	or	≥100			

Blood Pressure Chart

Pulse and Mean Arterial Pressures:

Mean arterial pressure: responsible for driving blood into the tissues throughout the cardiac cycle. It's a better indicator of perfusion to vital organs than systolic blood pressure.

- ★ Pulse pressure = systolic diastolic
- ***** MAP (average) = Diastolic + $\frac{1}{3}$ Pulse pressure OR $\frac{1}{3}$ CBP + $\frac{2}{3}$ (DBP)

Factors Affecting Arterial BP:

Blood Volume: (male slides)

- An increase in blood volume increases the $CO \rightarrow \uparrow ABP$
- A decrease in blood volume as in hemorrhage, dehydration decreases VR \rightarrow decreased CO $\rightarrow \downarrow$ ABP

Male slides

Effects of gravity on BP:

- Increases the BP of vessels below the level of the heart.
- **Decreases** the BP of vessels **above** the level of the heart.
- The gravitational effect = 0.77 mmHg/cm, e.g:

-A normal adult in upright position has MAP=100 mmHg at the heart level, calculate

the MAP of an artery at the head (50 cm above the heart) = 100^{4} (0.77x50) = 62mmHg.

We add(+) instead of subtracting(-) if the distance is under the level of the heart.

Sagital sinus -10 mm Hg	Factors affecting vessel diameter			
0 mm Hg 0 mm Hg +6 mm Hg +8 mm Hg	vasodilators	vasoconstrictors		
+22 mm Hg +35 mm Hg +40 mm Hg	 Nitric oxide Histamine. Atrial natriuretic peptide (ANP). Prostacyclin (PGI2). 	 Norepinephrine. Angiotensin II. Vasopressin. Endothelin-1. 		
re 15-10. Effect of gravitational pressure on the venous pres- stroughout the body in the standing person.		• Thromboxane A2.		

Blood Flow:

Ohm's

law

- Amount of blood moving through a vessel in a given period of time (ml or L / min or sec).
- Generally is equal to Cardiac output. **AP**
- Affected by Pressure & Resistance: $\mathbf{Q} = \frac{\mathbf{R}}{\mathbf{R}}$
- Directly Proportional to pressure differences and inversely proportional to resistance

Blood Flow and pressure:

- Blood flows down a pressure gradient.
- Absolute value of pressure isn't important to flow, but the difference in pressure $\triangle P$ is important to determine the blood flow.

The resulting pressure is called the "**Deriving pressure**" in the vascular system.

Blood Flow and resistance :

- \rightarrow It's the tendency of the vascular system to oppose flow.
- → Resistance is affected by: Length + radius of the vessel and viscosity of the blood n.

Poiseuille's Law: R =
$$\frac{8 \eta L}{\pi r^4}$$

In a normal human, **L** is fixed, so blood viscosity **η** & **radius** of the vessels have the greatest effect on resistance

Blood Flow and Poiseuille's Law:

$$Q = \frac{(\text{Pi-Po}) \pi r^4}{8 \eta L}$$

 Fluid flow through cylindrical tube ↓ when Resistance ↑ (i.e when △P↓, when vessel diameter ↓, or when η ↑).

Total Peripheral Resistance (TPR):

$$R = \frac{\Delta P}{\Omega}$$

Systemic Circulation		Pulmonary Circulation		
Aortic pressure - RAP	120 - 2 mmHg	Pulmonary pressure	e - LAP 15 - 3 mmHg	
Flow	83.3 ml/sec (5 L/min)	Flow	$= \frac{1}{83.3 \text{ ml/sec} (5 \text{ L/min})}$	
TPR = 1.4 (PRU's) PRU: peripheral resistance unit		PulR = 0.14 (PRU's) (very low compared to systemic circulation due to low pulmonary pressure)		

Resistance to Flow in the CVS Arrangement of vessels: Female slides

The effect of radius on blood flow :

The effect of total cross sectional area on velocity :

- → as the diameter \downarrow the cross-sectional area \uparrow and velocity of blood flow \downarrow .
- → because the blood volume flow (Q) must pass through each segment of the circulation each min, the velocity is inversely proportional to the cross-sectional area: V = Q/A

Thus when at rest, velocity = 33 cm/sec in the aorta. And 0.3 mm/sec in the capillaries.

Velocity = a: 5 cm/s b: 1 cm/s c: 10 cm/s

Recall that when the flow rate at one point is equal to another, the velocity and area at both points will be equal.

Q1=Q2 -> A1V1=A2V2 prep year physics, yeah...

The effect of blood viscosity on vascular resistance and blood flow:

- Blood viscosity is due to the large numbers of suspended RBCs and to less extent due to types & concentration of proteins in the plasma.
- Viscosity increases drastically as the hematocrit increases.
- \uparrow viscosity \rightarrow \uparrow resistance and \downarrow flow.

Compliance (distensibility) of Blood Vessels:

- Compliance is the volume of blood that the vessel can hold at a given pressure. C = V/P
- This capability provides smooth, continuous blood flow through the small vessels of the tissue.
- Venous system has the highest compliance & acts as a blood reservoir (↑ volume and ↓ pressure), while the arterial system has the lowest compliance.

Elasticity of blood vessels: Male slides

- Changes in large vessel elasticity affects ABP.
- For example in atherosclerosis, there is a decrease in compliance ,therefore during systole the vessels don't expand so the pressure increases.

Female slides

Laminar and Turbulent Blood Flow: Female slides

- Streamlined
- Outermost layer moving slowest & center moving fastest.

- Blood flows crosswise in and along the vessel forming whorls called Eddy currents. It occurs when:
- \checkmark Blood flow rate is too great
- \checkmark It passes by an obstruction in the vessel
- ✓ It makes a sharp turn
- \checkmark It passes over a rough surface

Measurement of BP

1. if the blood velocity of a certain vessel is 20 m/s, what is the new velocity if the cross-sectional area of the same vessel halved ,and the blood flow doubled?

- **A.** 20 m/s
- **B.** 80 m/s
- **C.** 40 m/s
- **D.** 5 m/s

2. A patient comes in the ER with a SBP of 154 mmHg, which class of BP is this?

- A. Hypertension (stage 1)
- B. Hypertension (stage 2)
- C. Hypotension
- D. Prehypertension

3. which of the following structures is the most resistant to blood flow?

- A. Heart valves
- B. Capillaries
- C. Arterioles
- D. veins

4. A patient has a pulmonary BP of 17 mmHg, and a blood flow of 90 ml/s, with a pulmonary resistance of 0.15, the left atrial pressure should be:

- A. 4.5 mmHg
- B. 4 mmHg
- C. 3.5 mmHg
- D. 3 mmHg

5. A patient comes in to the ER severely dehydrated, what is the most likely change in his BP?

- A. Elevated
- B. Decreased
- C. Normal
- D. ¯_(♡)_/¯
- SAQ:

1- Mention two formulas you can calculate the MAP from: Slide 4

2- Name 4 clinical complications that lead to hypertension : Slide 11

Leaders

Sedra Elsirawani

Abdulrahman Alhawas

Members

- Lama AlZamil
- Arwa AlEmam
- Noura AlTurki
- Ghada AlSadhan
- Nouf AlShammari
- Nouf AlHumaidhi
- Taibah AlZaid
- Ajeed AlRashoud
- Reem AlGarni
- Raghad AlKhashan
- Leen AlMazroa
- Sara Alarifi
- Maha AlNahdi

- Badr Almuhanna
- Abdulrahman Almezaini
- Omar Aldosari
- Omar Alghadir
- Ibrahim Alshaqrawi
- Abdullah Aldawood
- Abdullah Shadid
- Meshari Alzeer
- Mohammed Alhamad
- Abdullah Alassaf
- Khalid Alkhani
- Amjad Albaroudi
 - Mohammed Alhuqbani

Thank you!