

MED438

Lecture 3 – 4 **Cardiac Cycle**

- •Red: important
- •Black: in male / female slides
- Pink: in female slides only
- •Blue: in male slides only
- •Gray: extra information **Editing file**

Objectives:

- Enumerate the phases of cardiac cycle.
- Explain the effect of heart rate on duration of systole and diastole.
- Recognize the pressure, electrical, sound and volume changes during cardiac cycle.
- Correlate different phases of cardiac cycle with various in events.
- Compare and contrast left and right ventricle during the cardiac cycle.
- Describe atrial pressure waves & their relationship to cardiac cycle.
- Describe the use of the pressure-volume loop in describing the phases of the cardiac cycle.

Valves of the heart

Atrioventricular(AV) valves:

1- Tricuspid valves: Between the right atrium and right ventricle

2- Mitral valve: between the left atrium and left ventricle

Semilunar valves:

Female slides

1- Pulmonary valve: between the right ventricle and pulmonary artery

2- Aortic valve: between the left ventricle and aorta

- These valves open and close in response to pressure changes in the heart.
- They only allow blood to flow in ONE direction.
- Both of them can stay closed at the same time, but they CANNOT stay open simultaneously.

Cardiac Cycle

Definition:

The cardiac cycle is the time duration comprising all events from one heart contraction to the beginning of the next heart contraction.

Each cycle is initiated by depolarization of the SA node, followed by atrial systole (0.1 sec) \rightarrow ventricular systole (0.3 sec) \rightarrow diastole of whole heart (0.4 sec).

Events:

- 1. Mechanical events: <u>pressure</u>, <u>volume</u>, and <u>sound</u> changes
- 2. Electrical events (ECG): action potentials

Cardiac cycle time:

• To calculate the duration of one <u>complete</u> cardiac cycle:

Duration = 60 / HR

- For example, if a person's HR is 75 bpm, his/her cardiac cycle duration = 60/75 = 0.8 s
- Duration is inversely proportional to the HR

Cardiac Cycle

The cardiac cycle has two phases:

-Notice how when heart rate increased, Diastole was more affected than systole

-Both events occur simultaneously

Atrial Events			
Systole (0.1 s) Diastole (0.7 s)			
Ventricular Events			
Systole (0.3 s)	Diastole (0.5 s)		
Systole (0.14)	Diastole (0.16)		

The total time for the cardiac cycle (HR = 75 bpm) 0.8 seconds

Ventricular diastole is **long** for **three** important reasons:

- 1- Coronary blood flow
- 2- Ventricular filling

3- Rest

General principles of Cardiac Cycle

2

3

4

The main function of the heart is to pump blood throughout the body through pulmonary (lungs) and systemic (whole body) circulations.

Contraction of the heart generates pressure change that allows blood movement

Blood flows from areas of high pressure to areas of low pressure

Events in right and left ventricles are the same, but with lower pressure gradients in the right side

Atrial & ventricular systole do not occur at same time, but their relaxation occurs at same time during diastole of whole heart which lasts for 0.4 sec

Phases of the Cardiac Cycle

Ventricular systole (0.3 seconds)

- 1- Isovolumetric contraction (Early systole)
- 2- Rapid Ejection (Late systole)
- 3- Reduced Ejection (Late systole)

Ventricular diastole (0.5 seconds)

- 4- Isovolumetric relaxation (Early diastole)
- 5- Rapid filling (Late diastole)
- 6- Slow filling (Late diastole)
- 7- Atrial systole

Volume Changes

Ejection Fraction: the ratio of ejected blood (SV) to the blood in a ventricle right before a diastole (EDV). It is a good indicator of ventricular function. ***Normal range: 60-65%**

$EF = SV / EDV \times 100$

SV = EDV - ESV

Atrial Systole

Atrial Systole				120 -				
Description	The atria contr ventricles.	The atria contract, pushing the last 25% of blood to the ventricles.			− Press (mmHg) 60 −			
Duration	0.11 seconds	0.11 seconds						
Valves	AV	Open			LV Vol 80 - (mL)			
Valves	Semilunar	Closed			$\begin{array}{c} 40 \ \neg \\ ECG \ S_4 \ S_1 \end{array}$			
Ventricular volume	Ventricular volume rise to EDV (120-130 ml) at the end of this phase			Atria				
Ventricular pressure	First a slight ↑ (blood entry) Then slight ↓ (ventricular dilation)Atrial pressureFirst ↑ (by systole) Then ↓ (blood exit)							
Sounds	4th heart sound (S4)		Ventricles relaxed	ALLAN AND AND AND AND AND AND AND AND AND A				

Systole

Ejection (Rapid & Reduced)

Description	The ventricle shortens its wall (isotonically) ejecting blood through the aorta and pulmonary artery in <u>two phases</u> , <u>marking</u> <u>the end of systole:</u> Rapid (ejecting 70%) & Reduced (ejecting 30%)					
Duration	<u>Rapid: 0.10</u> seconds <u>Reduced: 0.15</u> seconds					
	AV	Closed				
valves	Semilunar	Semilunar Open				
Ventricular volume	Decrease to $ESV = 50 ml$					
Ventricular pressure	<u>Rapid:</u> increase to 120 mmHg <u>Reduced:</u> decrease		Atrial pressure	<u>First</u> \downarrow because when ventricles contract, they pull the AV fibrous ring & valves down then increase.		
Sounds	None					

Isovolumetric relaxation

Description	The ventricles relax, causing a drop in pressure which leads to backflow of blood from the aorta (closing the valves)				
Duration	0.06 -0.04 seconds				
	AV	Closed			
Valves	Semilunar	Closed			
Ventricular volume	Volume does not change ESV= 50 ml				
Ventricular pressure	Decreases <u>rapidly</u> to diastolic levels (2-10 mmHg) because the valves are closed & the relaxation is isometric		Atrial pressure	Increases gradually due to accumulation of venous blood	
Sounds	2nd heart sound (S2) (Sudden Aortic valve closure)				

Filling phase (Rapid & Slow)					1 2 3 4 5	Diastole
Description	The AV opens, filling the ventricle in 3 phases: Rapid (70%) & Slow/Diastasis (5%) & Atrial systole (25%)				-LVP	
Duration	Rapid: 0.11 secondsSlow (diastasis): 0.22 second			usis): 0.22 seconds		V
¥7-1	AV	Open			/	
Valves	Semilunar	Closed				
Ventricular volume	Volume is increased in ventricles and decreased in atria			$S_4 S_1 S_1$	2 S ₃	
Ventricular pressure	↑ slightly due to increase in volume, but is still less than atrial pressure		Atrial pressure	First sudden ↓ due to rush of blood into ventricles. Then ↑ due to venous blood entry.	Atria	
Sounds	3rd heart sound (S3) during rapid filling phase (rush of blood and vibrations in ventricular wall)		Ventricles relaxed	Contraction of the second		

Aortic pressure curve +

1- Ascending phase (anacrotic limb):

Aortic pressure increases to 120 mmHg, coincides with rapid ejection.

2- **Descending phase (catacrotic limb):** Can be split into 4 stages:

- 1. Decrease in aortic pressure Coincides with reduced ejection (blood entering aorta is less than blood leaving it)
- 2. Dicrotic notch (incisura) Sudden drop in pressure caused by closure of aortic valve at the end of ventricular systole.

3. Dicrotic wave

Slight increase in aortic pressure caused by the aortic elastic recoil

4. <u>Slow</u> aortic pressure decrease

Down to 80 mmhg due to continuous blood flow in systemic arteries.

Arterial curve is similar to aortic, but **sharper**.

- systolic peak pressure of 110-130 mmHg.
- diastolic pressure of 70-85 mmHg.

Atrial pressure waves +

1. "a" wave (atrial systole):

increase due to atrial contraction decrease due to blood passing into ventricles

2. "c" wave (ventricular systole):

Increase due to bulging of AV valve in isometric contraction decrease due the downward pulling of AV valve during ventricular rapid ejection

3. "x" descent:

decrease due continued pulling of AV valve during ventricular reduced ejection

4. "v" wave (atrial diastole):

Increase due to venous return decrease due to blood entry into the ventricles during rapid filling phase

5. "y" descent:

Decrease due to continued blood flow during reduced filling phase.

In Jugular venous pulse(JVP), the same waves can be seen but are delayed

Volume changes

#	Phases	Ventricular Volume	Atria Volume
1	Isometric Contraction	Constant (EDV)	Increase
2	Rapid Ejection	Decrease rapidly	Increase
3	Reduced Ejection	Decrease slowly	Increase
4	Isometric Relaxation	Constant (ESV)	Increase
5	Rapid Filling	Increase rapidly	Decrease
6	Reduced Filling	Increase slightly	Decrease
7	Atrial Systole	Increase moderately	Decrease

Pressure changes

#	Phases	Ventricular Pressure
1	Isovolumetric Contraction	Increase suddenly (80mmHg)
2	Rapid Ejection	Increase rapidly (120mmHg)
3	Reduced Ejection	Decrease slowly
4	Isovolumetric Relaxation	Decrease rapidly
5	Rapid Filling	Increase slightly
6	Reduced Filling	Increase gradually
7	Atrial Systole	Increase slightly then decrease

Pressure (mm Hg)

Different pressures in the chambers of the heart

Phase I (filling phase) (A-B)	Pressure: 2-3 mmHg Volume: rises to EDV=120 ml Valves: A- mitral valve opens B- mitral valve closes	
Phase II (Isovolumetric contraction) (B-C)	Pressure: rises to 80 mmHg Volume: EDV, remains constant Valves: B- all closed C- Aortic valve opens	
Phase III (Ejection phase) (C-D)	Pressure: rises from 80 to 120 mmHg. Volume: drops to ESV= 50 ml Valves: C-aortic valve stays open D-Aortic valve closes	
Phase IV (Isovolumic relaxation) (D-A)	Pressure: drops to 2-3 mmhg Volume: ESV, remains constant Valves: D- Aortic valve stays closed A- Mitral valve opens	

For further explanation

Ventricular-Pressure Volume Loop

Importance:

- **1.** calculating cardiac work output.
- **2.** "EW" represents the net external work output of the ventricle during cardiac cycle.

Changes to PV loop:

- An <u>increase</u> in **Contractility** (Figure A) as seen during **exercise**.
- An <u>Increase</u> in **preload** (Figure B) correlates with more venous return, which will increase the stroke volume, as shown by the increased width of the graph.
- **Preload:** the degree of tension on the muscle when it begins to contract (end-diastolic pressure)
- An <u>increase</u> in **afterload** (Figure C) means there is an increase in aortic pressure and a decrease in stroke volume (high pressure, less blood gets pumped out). as shown by the increased height of the graph. This can be seen in **aortic stenosis**.
- **Afterload:** Arterial pressure against which the ventricle exerts its contractile force.

Summary

1. Venous return increases atrial pressure in which of the following waves?

- **A.** C wave
- **B.** A wave
- **C.** V wave
- **D.** Y wave

2. Calculate the ejection fraction if EDV is 135 ml and ESV is

65.

- **A.** 52%
- **B.** 48%
- **C.** 65%
- **D**. 55%

3. The closure of the mitral and tricuspid valves causes which of the following sounds?

- A. S1B. S2
- **C.** S3
- C. 55
- **D.** S4

4. The average diastolic pressure in the left ventricle is?

- **A.** 80 mmHg
- **B.** 25 mmHg
- **C.** 10 mmHg
- **D.** 120 mmHg

5. Which of the following valves is stimulated during the ejection phase?

- A. Mitral valve
- **B.** Aortic valve
- C. Tricuspid
- **D.** Pulmonary
- SAQ:

1- Explain the effects of increased Afterload on the PV loop

Increased aortic pressure, leads to decreased stroke volume because less blood is getting pumped out. Fig c

2- Enumerate the different phases of the aortic pressure

curve.

Slide 14

Leaders

Sedra Elsirawani

Abdulrahman Alhawas

Members

- Lama AlZamil
- Arwa AlEmam
- Noura AlTurki
- Ghada AlSadhan
- Nouf AlShammari
- Nouf AlHumaidhi
- Taibah AlZaid
- Ajeed AlRashoud
- Reem AlGarni
- Raghad AlKhashan
- Leen AlMazroa
- Nouran Arnous
- Maha AlNahdi

- Badr Almuhanna
- Abdulrahman Almezaini
- Omar Aldosari
- Omar Alghadir
- Ibrahim Alshaqrawi
- Abdullah Aldawood
- Abdullah Shadid
- Meshari Alzeer
- Mohammed Alhamad
- Abdullah Alassaf
- Khalid Alkhani
- Amjad Albaroudi
- Mohammed Alhuqbani

Thank you!