


#### •Red: important

- •Black: in male / female slides
- Pink: in female slides only
- •Blue: in male slides only
- •Gray: extra information Editing file

Lecture 9 Heart failure and venous pulse





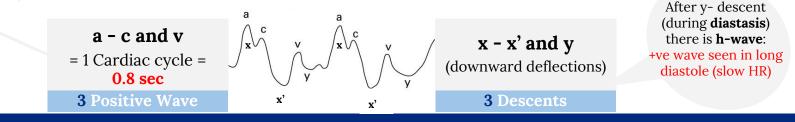
# **Objectives:**

- Define Jugular Venous Pressure.
- Identify different transmitted waves in the JVP record.
- Define and classify heart failure (HF).
- Understand the etiology of heart failure.
- Summarize clinical picture of left-sided and right-sided failure.
- Recognize the factors aggravating HF
- Understand the pathophysiology & compensatory mechanisms of Heart Failure.

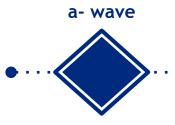
### Jugular Venous Pulse (JVP)

### **Reflection of:**

The hemodynamics of the right sided heart:


Phasic pressure changes in the RA during systole & the RV during diastole.

#### Best measured from the Right Internal Jugular Vein (IJV). Why?


- It is in **direct continuation** & **anatomically closer** to the **RA**.
- Extend in an almost **straight line** through innominate vein to the **superior vena cava & RA**.
- Is **less likely affected** by extrinsic compression from other structures in the neck.
- Has no or less number of valves than the External Jugular Vein (EJV) which favors transmission of the RA pressure.
- Less impact of vasoconstriction (sympathetic activity) on IJV than EJV.

### Transmission of pulsations:

Pulsations produced in **the central veins** transmitted  $\rightarrow$  **jugular veins**, <u>producing</u> pulsations and pressure waves in the jugular veins.



### **Causes of JVP waves**



#### Atrial systole

- First +ve presystolic wave due to ↑ in atrial pressure during effective RA systole.
- Results in **retrograde blood flow** in to the SVC & jugulars.
- **Dominant** wave & is > v- wave.
- It follows the **P- wave in ECG**. <u>It precedes:</u>
- Upstroke of the carotid pulse.
- The first heart sound (**S1**).

# x- descent

#### **Atrial diastole**

- Begins during V.systole & ends just before the second heart sound (S2). (Systolic collapse)
- Most prominent motion of normal JVP (especially during inspiration).
- It is > y- descent

#### Isovolumic ventricular contraction

c-wave

- **Second +ve** wave recorded in JVP which **interrupts** the x-descent.
- Produced by:
  - I. Upward bulging of closed tricuspid valve (TV) into the RA during isovolumic ventricular contraction.
- II. Carotid artery impact on JVP.

### **Causes of JVP waves cont**

x'- Descent

Early RV systole

• It is systolic trough after c-wave.

#### Due to:

- **Downward pulling** of the TV by contracting right ventricle. **(rapid ejection phase).** 

- Descent of RA floor by

contracting RV.

- **Fall of RA pressure** during early RV systole.



#### Late RV systole

- **Third +ve** wave in JVP which begins in late systole & ends in early diastole.
- Rise in the RA pressure due to continued (venous return) during ventricular systole when **tricuspid valve closed**.
- It is roughly **synchronous** with <u>carotid upstroke</u> & corresponds to the second heart sound **(S2)**.

# y- Descent

**RV** Diastole

### • Diastolic collapse wave (down slope).

- It begins & ends during **diastole** & after second heart sound **S2**.
- <u>Decline</u> of RA pressure due to RA emptying during early diastole when **tricuspid valve opens**.

<u>Initial y- descent</u>  $\rightarrow$  corresponds to the **rapid RV filling**. <u>later part</u>  $\rightarrow$  produced by **continued diastolic inflow** in to RV.

### **Internal Jugular vein & Carotid Pulses**

Female slides

### IJV

- Superficial and lateral in the neck.
- Better **seen** than felt.
- Has two peaks and two troughs.
- Descents > obvious than crests.
- Digital compression: **abolishes** venous pulse.
- JVP **falls** during inspiration & standing.
- Abdominal compression ↑ jugular pressure.

### **Carotid pulse**

- **Deeper** and **medial** in the neck.
- Better **felt** than seen.
- Has **single upstroke** only.
- Upstroke brisker and visible.
- Digital compression: has **no effect**.
- Do **not change** with respiration or standing.
- Abdominal compression has **no effect**.

### **JVP Measurement**

A Highest point of jugular vein 5 cm CVP = 9 cm H<sub>2</sub>O The sternal angle

Patient lies supine and at 45 degrees.

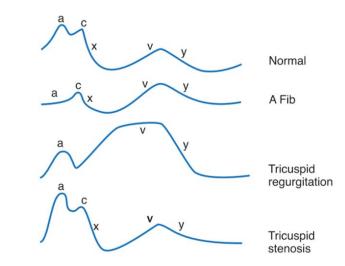
Two scale method: A. horizontal scale at the top of the oscillating venous column in IJV cuts. B. vertical scale at the sternal angle. **JVP=** Vertical distance that you measured (normally= 4cm) + distance between midpoint of RA & sternal angle= 5cm. > 4cm (elevated JVP) Thus, 4cm + 5cm = 9cm By conversion → normal mean JVP (9 cm column of water/1.3 = 6.9 mmhg

### Abnormalities of jugular venous pulse

### A- Low jugular venous pressure

• Hypovolemia.

### **B- Raised Jugular Venous Pressure**


- Increased right ventricular filling pressure
  e.g in heart failure fluid overload.
- Obstruction of blood flow from the right atrium to the right ventricle

e.g tricuspid stenosis.

- Superior vena caval obstruction
   e.g retrosternal thyroid goiter.
- Positive intrathoracic pressure

**e.g** pleural effusion, pneumothorax.

The JVP usually drops on inspiration along with intrathoracic pressure



Male slides

### **Heart Failure**

### Definition

A condition that exist when the heart is **unable to pump sufficient blood** to meet the metabolic needs of the body.

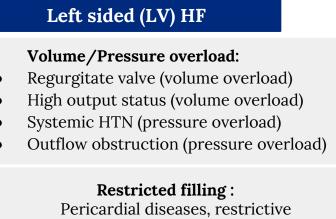
It is **not** a heart attack and **not** a death sentence.

# Forms of Heart Failure: Ac

- Systolic/Diastolic dysfunction.
- Left/right heart failure.
- High/low output failure.
- Acute/chronic failure.

| Acute heart failure                                                                                                                              | Chronic heart failure                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Occurs within hours or days</li> <li>Sudden serious abnormalities are presented. E.g: arrhythmia, infarction, valve rupture.</li> </ul> | <ul> <li>Occurs within months or years</li> <li>Caused by the heart going through its compensatory responses. E.g:</li> </ul>                                                                                                                                                             |
| • Can be lethal because the heart does not have time to activate its compensatory mechanisms.                                                    | - Hypertrophy<br>- Dilation                                                                                                                                                                                                                                                               |
| • If left alone, cardiogenic shock develops                                                                                                      |                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                  | <ul> <li>Occurs within hours or days</li> <li>Sudden serious abnormalities are presented. E.g: arrhythmia, infarction, valve rupture.</li> <li>Can be lethal because the heart does not have time to activate its compensatory mechanisms.</li> <li>If left alone, cardiogenic</li> </ul> |

### **Causes of Right vs Left- Sided HF**


- Occurs when either side of the heart can't keep up flow of blood.
- Can involve left or right side of the heart or both.
- Usually, the left side is affected first.

#### Right sided HF

Most common cause is left sided failure.

#### Other causes included:

- Pulmonary embolism.
- Pulmonary hypertension.
- RV infarction.
- Mitral + Pulmonary stenosis.
- COPD
- Interstitial lung disease
- Adult respiratory distress
- Chronic infections



cardiomyopathy, tachy arrhythmia

#### Loss of muscles :

Post MI, chronic ischemia, connective tissue diseases, infection, poisons.

Presents with pulmonary congestion.

### Left and Right sided Heart failure

| Clinical Picture     | Left sided HF             | Right sided HF                         |  |
|----------------------|---------------------------|----------------------------------------|--|
| Pitting edema (legs) | Mild to moderate          | Moderate to severe                     |  |
| Fluid retention      | Pulmonary edema           | Abdomen                                |  |
| Organ enlargement    | Heart                     | Liver                                  |  |
| Neck vein (JVP)      | Mild to moderate          | Severe                                 |  |
| Breath shortness     | Prominent dyspnea         | Present but not prominent              |  |
| GIT                  | Present but not prominent | Loss of appetite,<br>constipation, etc |  |

In **left** sided HF, blood gets backed up into the **pulmonary** veins, causing <u>pulmonary</u> <u>edema</u>. In some cases, it can back up into the pulmonary artery, going to the right atrium and causing right sided HF and secondary pulmonary HT (Congestive HF). In **right** sided HF, blood gets backed up into the **systemic** circulation, causing <u>systemic</u> <u>edema</u>

### **Clinical signs of Heart Failure**

### Left Heart Failure:

(Mostly respiratory)

- Restlessness
- Confusion
- Tachycardia
- Exertional dyspnea

### - Fatigue Right Heart Failure:

- Fatigue
- Swelling of hands
- Hepato/splenomegaly
- GI distress
- Ascites

- Cyanosis
- Cough
- Crackles
- Blood-tinged sputum
- Paroxysmal nocturnal dyspnea
- Orthopnea

Heart failure affects the heart in 2 ways:

- 1. not enough blood circulates, this leads to **fatigue**
- 2. fluid <u>congests</u> behind the heart because it's not being pumped, squeezing the lungs and the rest of the body. This causes **swelling and dyspnea**

- Increased peripheral venous pressure
- Pitting edema
- Anorexia
- Distended jugular veins
- Secondary to chronic pulmonary issues

Think **FACES... F**atigue **A**ctivities limited **C**hest congestion **E**dema or ankle swelling **S**hortness of breath



### Systolic dysfunction

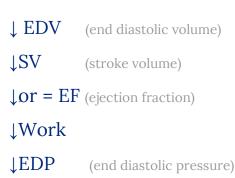
Impairment of left ventricular contraction as a result from loss of the intrinsic inotropy (contractility.)

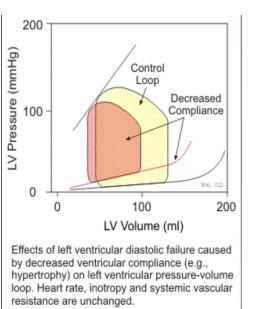
#### **Causes:**

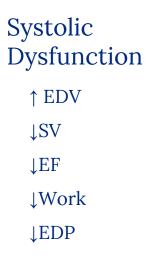
- Myocardial infarction
- Transient myocardial ischemia
- Dilated cardiomyopathy
- Chronic volume overload

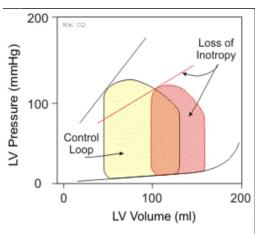
#### Leads to:

- Impaired LV contraction
- Decrease in ejection fraction(<40%)
- Dilated LV
- Reduction in Stroke volume (SV) for any given end-diastolic volume (EDV)


### Diastolic dysfunction


Impaired ventricular diastolic relaxation as the ventricle becomes less compliant (stiffer.)


#### **Causes:**

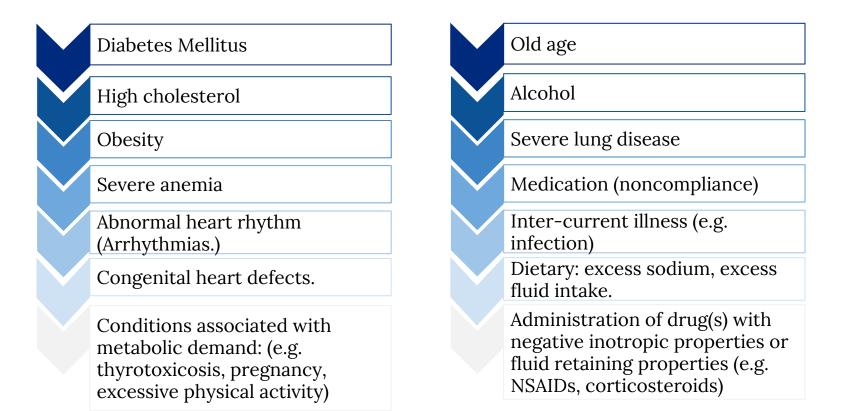

- LV hypertrophy
- Transient myocardial ischemia
- Hypertrophic cardiomyopathy
- Obstruction of LV filling
- Restrictive cardiomyopathy **Leads to:** 
  - Stiffer LV
  - Normal ejection fraction
  - Contracted LV
  - Reduction in Stroke volume (SV) for any given end-diastolic volume (EDV)

### Diastolic Dysfunction










*Figure 2.* Effects of acute left ventricular failure (loss of inotropy) on left ventricular pressure-volume loop. Heart rate unchanged.

### **Etiology of Heart Failure**

| Congestive Heart Failure (Chronic)                                                                                                       | Myocardial Failure (Chronic-Acute)                                                     | <b>Circulatory Failure</b>                                                                                                                                                                                                                  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Is a clinical syndrome which is<br>developed as a result of<br>accumulation of the blood before<br>the left or right parts of the heart. | Myocardial abnormalities that can<br>lead to its inability to fulfill its<br>function. | Abnormality in circulation that<br>can be responsible for the<br>inadequacy in tissue perfusion.<br><b>e.g.</b> decrease in blood volume, changes in<br>vascular tone(eg.hypersensitivity), disorder in<br>heart function. (sudden changes) |  |
| Inappropriate work-load                                                                                                                  | Restricted filling                                                                     | Impaired myocardial function/<br>Damage/ Loss                                                                                                                                                                                               |  |
| Hypertension / Severe                                                                                                                    | • Pericarditis.                                                                        | Myocardial ischemia                                                                                                                                                                                                                         |  |
| hypotension.                                                                                                                             | • Myocarditis.                                                                         | (Coronary artery disease).                                                                                                                                                                                                                  |  |
| Pulmonary embolism                                                                                                                       | Cardiomyopathy.                                                                        | • Myocardial infarction.                                                                                                                                                                                                                    |  |
| (Cor-pulmonale).                                                                                                                         |                                                                                        | • Myocardial death.                                                                                                                                                                                                                         |  |
| • Pregnancy, anemia,                                                                                                                     |                                                                                        |                                                                                                                                                                                                                                             |  |
| thyrotoxicosis, A-V fistula.                                                                                                             |                                                                                        |                                                                                                                                                                                                                                             |  |
| • Valvular heart disease.                                                                                                                |                                                                                        |                                                                                                                                                                                                                                             |  |

### **Risk Factors of HF**



### Pathophysiology of Heart Failure



- Heart failure can be secondary to systolic or diastolic dysfunction.
- This will result in a decrease in cardiac output (CO), as a result of a decline in stroke volume (SV).
- Reduced "Ejection Fraction":
  - Healthy heart  $\geq 60\%$
  - Heart failure  $\leq 40\%$
- Remaining healthy parts of the heart tries to remodel & compensate for the loss in the pumping function.

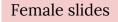
- Change in Ca handling
- Change in contractile proteins
- Apoptosis
- More fibrous tissue
- Changes in adrenergic receptors:
  - ↑ a1 receptors
  - b1 receptors:

desensitization  $\rightarrow$  down regulation

### Pathophysiology of Heart Failure (Neurohormonal changes)

Female slides

| N/H changes                                         | Favorable effect                                        | Unfavorable effect                                              |  |
|-----------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|--|
| ↑Sympathetic adrenergic<br>activity                 | ↑HR,↑contractility,<br>vasoconstriction>↑VR and filling | Vasoconstriction> ↑After<br>load>↑workload>↑ O2<br>Consumption. |  |
| <b>↑Circulating catecholamines</b>                  | ↑HR,↑contractility,<br>vasoconstriction>↑VR & filling   | Vasoconstriction> ↑After<br>load>↑workload>↑ O2<br>Consumption. |  |
| ↑Renin angiotensin<br>aldosterone system activation | Salt & water retention>↑VR & vasoconstriction           | Vasoconstriction> ↑After load>↑BP                               |  |
| <b>↑Vasopressin (ADH)</b>                           | water retention>↑VR & vasoconstriction                  | Vasoconstriction> ↑After load>↑BP                               |  |
| ↑Interleukins & TNF alpha                           | May have roles in myocyte hypertrophy.                  | Apoptosis (programmed cell death)                               |  |
| ↑Endothelin                                         | Vasoconstriction>↑VR                                    | Vasoconstriction> ↑After load>↑BP                               |  |


### Neurohormonal Compensatory Changes in Heart Failure:

- Increase in sympathetic nervous activity (tone).
- Increase in circulating catecholamines.
- Increase in Renin-angiotensin-aldosterone.
- Increase in vasopressin.
- Increase in atrial natriuretic factor.

### Main Compensatory Changes for Decreased Cardiac Output in Heart Failure:

- Increased sympathetic nervous system activity (tone) and catecholamines:
- ↑ HR,
- $\uparrow$  Contractility,
- vasoconstriction to  $\uparrow$  BP.
- $\uparrow$  Venous return will  $\uparrow$  SV.
- Activation of Renin-Angiotensin aldosterone System (RAAS) to  $\uparrow$  BP.

### Myocardial Remodeling as Compensatory Changes for HF



### Concentric Hypertrophy

(Lumen Changes)

- Myocardial thickening without dilation of ventricular lumen.
- Increase ratio of wall thickness to cavity radius.
- Thickening of myocytes by parallel apposition of sarcomeres.
- tension with an unchanged extent of shortening.
- Increased LVEDP.

)1

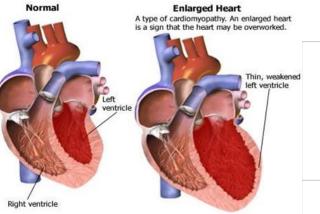
- Increased incidence of backward failure.
- Decreased wall stress at expense of increased oxygen demand & increased LVEDP.

02 Ecc

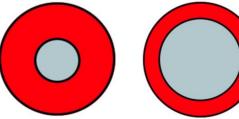
### **Eccentric Hypertrophy**

(lumen doesn't change)

- Cavity dilation & hypertrophy.
- Prolongation of myocytes.
- Less internal work expended than in pressure overload.
- Increased stroke volume at the expense of increased wall stress, oxygen




### Ventricular dilation


More & more stretched out & weaker No change in the wall (thin)

#### Female slides

### Ventricular Remodeling

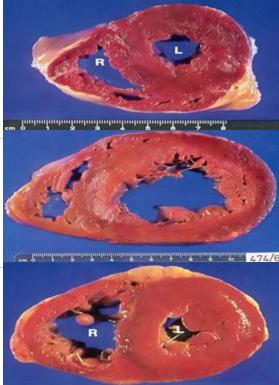


Concentric vs. Eccentric Hypertrophy:



Pressure Overload **Concentric Hypertrophy** Increased LV mass Increased relative wall thickness Normal relative wall thickness

Volume Overload Eccentric Hypertrophy Increased LV mass


Normal heart (cross section)

#### Eccentric hypertrophy (hypertrophy & dilatation) of left ventricle:

Seen in volume overload states, after acute MI (postinfarction remodeling), Seen in HTN heart disease

#### Concentric hypertrophy of the left ventricle:

Seen in pressure overload states as in HTN & aortic stenosis



### New York Heart Association (NYHA) Functional Classification of Heart Failure

### AHA/ACC Stages of Heart Failure

- Asymptomatic with

Female slides

| Class | % of<br>patients | Symptoms                                                                                            | 1   | no heart damage.<br>- High risk for<br>development of heart<br>failure. |
|-------|------------------|-----------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------|
| Ι     | 35%              | Patient with cardiac disease but with no limitations<br>in ordinary physical activity (no symptoms) | II  | - Structural damage or heart disease.                                   |
| II    | 35%              | Mild symptoms and slight limitation during ordinary activity                                        |     | - No symptoms of<br>heart failure.                                      |
| III   | 25%              | Marked limitation in activity even during minimal activity. Comfortable only at rest                | III | - <mark>Symptomatic</mark><br>heart failure.                            |
| IV    | 5%               | Severe limitation. Experiences symptoms even at rest                                                | IV  | <ul> <li>End-stage<br/>heart failure.</li> </ul>                        |

### **Diagnosis of heart failure:**

### Heart failure can be diagnosed by the following:

- Ejection fraction
- Blood tests
- Physical exam
- Other tests: Female slides

#### Echocardiogram

#### Look for:

- ventricular dysfunction.
- wall motion abnormality that may signify coronary artery disease (CAD).
- any valvular abnormality.
- any intra-cardiac shunts.

#### Electrocardiogram (ECG)

#### Look for:

- arrhythmia
- Old or recent MI.
- Left bundle branch block.
- Cardiomyopathy.

#### Chest X-ray Look for:

- size & shape of the heart.
- evidence of pulmonary venous congestion.
- pleural effusion.

#### **Cardiac Catheterization**

#### **Performed**:

- when coronary artery disease (CAD) is suspected.
- if heart transplant is indicated.

### **Treatment Options of heart failure:**

# The more common forms of heart failure cannot be cured, but can be treated:

#### Lifestyle Changes

- low-sodium +low fat diet.
- -Fluid restriction.
- -Stop smoking.
- -Lose weight + exercise
- -Avoid alcohol.
- -Reduce stress.
- -Keep track of symptoms, weight & report any changes or concern to the doctor.

Medications Used to Treat Heart Failure:

- -Diuretics (to reduce swelling)
- -Digoxin (Increase contractility)
- -**ACE Inhibitors** (vasodilation,↓ BP, block RAAS)
- - $\beta$  Blockers ( $\downarrow$  HR,  $\downarrow$ BP.)
- •Combination of medications has been proven to save lives & keep people out of hospital.

#### Surgery & Other Medical Procedures:

- •Not often used unless there is a correctable problem.
- -Coronary artery bypass.
- -Angioplasty.

Male slides

- -Valve replacement.
- -Defibrillator implantation.
- -Left ventricular assist device (LVAD.)
- -Heart transplantation.

## Physiological adaptations (compensatory mechanisms)

### 1- Decreased firing of carotid sinus baroreceptor

### ★ ↑ sympathetic stimulation

- Vasoconstriction of veins and arteries (increased preload and afterload, **respectively**)
- Increased HR and Contractility.
- Increased CO and BP.

### 2- Decreased renal perfusion:

activation of renin-angiotensin system (RAAS) which has many effects including raising BP

### 3- Decreased effective circulating blood volume:

posterior pituitary releases ADH which increases H2O reabsorption. (Increases blood volume)

Basically, this all leads to:

- ↑ SV + EDV

- ↑HR

- ↑ Blood volume

- ↑ H2O retention

↑ Contractility

↑ Sympathetic firing

### **Complications of prolonged compensatory measures**

- 1. **Prolonged sympathetic activation:** leads to down regulation of adrenergic receptors
- 2. **Vasoconstriction of arterioles:** resistance to blood flow is increased (increased afterload)
- Hypertrophy: there's a difference between O2 supply and need -> land without
   O2 there is decreased ability to generate force
- 4. **Excessive salt and H2O retention:** as a result of RAAS
- 5. **Over-distended**(swollen) **ventricles:** has to use more energy and more wall tension to reach ejection pressure.

# Quiz

#### 1. Which of the following is a Characteristic of JVP?

- A. Increased in right sided heart failure
- **B.** Decreased in right sided heart failure
- **C.** Increased during diastole
- **D**. Decreased during systole

2. In right-sided heart failure, the organ that gets enlarged is:

- A. Heart
- **B.** Kidney
- C. Liver
- **D.** Lungs

### 3. Which of the following is a feature of eccentric hypertrophy?

- A. Decreased wall stress
- **B.** Dilated cavity only.
- **C.** Thickening of ventricle with dilated cavity.
- **D.** Hercules the great roman hero

### 5. Which of the following is a clinical sign of left sided heart failure?

- A. Anorexia
- **B.** orthopnea
- **C.** Ascites
- **D.** Edema

5. Bulging of the tricuspid valve causes which of the following waves?

- A. C- wave
- **B.** A- wave
- C. V- wave
- **D.** X- wave

SAQ:

#### 1- How can mitral stenosis cause right-sided heart failure?

Blood builds up in left atrium, then goes into pulmonary vessels until it reaches the right side.

#### 2- Why does the liver get enlarged in RHF

In RHF, blood will congest in the systemic circulation. Since the liver is a huge blood reservoir, it will most definitely get enlarged

## Leaders

Sedra Elsirawani

Abdulrahman Alhawas

## Members

- Lama AlZamil
- Arwa AlEmam
- Noura AlTurki
- Ghada AlSadhan
- Nouf AlShammari
- Nouf AlHumaidhi
- Taibah AlZaid
- Ajeed AlRashoud
- Reem AlGarni
- Raghad AlKhashan
- Leen AlMazroa
- Sara Alarifi
- Maha AlNahdi

- Badr Almuhanna
- Abdulrahman Almezaini
- Omar Aldosari
- Omar Alghadir
- Ibrahim Alshaqrawi
- Abdullah Aldawood
- Abdullah Shadid
- Meshari Alzeer
- Mohammed Alhamad
- Abdullah Alassaf
- Khalid Alkhani
- Amjad Albaroudi
  - Mohammed Alhuqbani

# Thank you!