Inborn Errors of Amino Acid Metabolism (Renal Block)

1 Lecture Dr. Khalid M. Sumaily

Biochemistry of: •Phenylketonuria (PKU) •Maple Syrup Urine Disease (MSUD) •Albinism •Homocyteinuria •Alkaptonuria

Inborn Errors of aa Metabolism

 Caused by enzyme loss or deficiency due to gene loss or gene mutation

Phenylketonuria (PKU)

Due to deficiency of phenylalanine hydroxylase enzyme
Most common disease of aa metabolism
Results in hyperphenylalaninemia

Phenylketonuria (PKU)

Classic PKU:

- Due to deficiency of phenylalanine hydroxylase
- Conversion of Phe to Tyr requires tetrahydrobiopterin (BH₄)
- Even if phenylalanine hydroxylase level is normal
- The enzyme will not function without BH₄
 Hence Phe is accumulated

WILEY

The pathway of phenylalanine degradation

Phenylketonuria (PKU)

Atypical hyperphenylalaninemia:
Due to deficiency of BH₄
Caused by the deficiency of:

Dihydropteridine reductase
Dihydrobiopterin synthetase
Carbinolamine dehydratase

Formation, utilization, and regeneration of 5,6,7,8-tetrahydrobiopterin (BH₄) in the phenylalanine hydroxylase reaction

Characteristics of PKU

 In the absence of BH₄, Phe will not be converted to Tyr

WILEY

Voet *Biochemistry* 3e Page 1002 © 2004 John Wiley & Sons, Inc.

Characteristics of PKU

Tyr will not be converted to catecholamine neurotransmitters
 Synthesis of catecholamines requires BH₄

Figure 19.50. Synthesis of catecholamines.

Textbook of Biochemistry With Clinical Correlations, Sixth Edition, Edited by Thomas M. Devlin. Copyright © 2006 John Wiley & Sons, Inc.

Characteristics of PKU

Trp will not be converted to serotonin (a neurotransmitter) as it requires BH₄

WILEY

Synthesis of serotonin

Characteristics of PKU

CNS symptoms: Mental retardation, failure to walk or talk, seizures, etc.
Hypopigmentation

Deficiency of melanin
Hydroxylation of tyrosine by tyrosinase is inhibited by high phe conc.

Characteristics of PKU

 Elevated phenylalanine in tissues, plasma, urine

Phe is degraded to phenyllactate, phenylacetate, and phenylpyruvate

♦ Gives urine a mousy odor

Cause of mousy urine smell in PKU

Characteristics of PKU

Prenatal diagnosis is done by detecting gene mutation in fetus
Neonatal diagnosis in infants is done by measuring blood phe levels
Treatment:

Life long phe-restricted diet

Maple Syrup Urine Disease

- Due to deficiency of branched chain αketoacid dehydrogenase
- The enzyme decarboxylates leucine, isoleucine and valine
- These aa accumulate in blood
- Symptoms: mental retardation, physical disability, metabolic acidosis, etc.
- Maple syrup odor of urine

Maple Syrup Urine Disease

Types: ◆ Classic type: Most common, due to little or no activity of α -ketoacid dehydrogenase ♦ Intermediate and intermittent forms: Some enzyme activity, symptoms are milder Thiamin-responsive form: High doses of thiamin increases α -ketoacid dehydrogenase activity

Degradation of branched-chain amino acids: valine, isoleucine and leucine. Deficiency of branched chain a-keto acid dehydrogenase leads to MSUD.

Maple Syrup Urine Disease

Treatment:

Limited intake of leucine, isoleucine and valine

Albinism

- A disease of tyrosine metabolism
- Tyrosine is involved in melanin production
- Melanin is a pigment of hair, skin, eyes
- Due to tyrosinase deficiency
- Melanin is absent in albino patients
- Hair and skin appear white
- Vision defects, photophobia

Voet *Biochemistry* 3e Page 1002 © 2004 John Wiley & Sons, Inc.

Melanin biosynthesis from tyrosine: Deficiency of tyrosinase leads to albinisim

Homocystinuria

Due to defects in homocysteine metabolism Deficiency of cystathionine β-synthase Converts homocysteine to cystathione High plasma and urine levels of homocysteine High plasma homocysteine is a risk factor for atherosclerosis and heart disease Skeletal abnormalities, osteoporosis, mental retardation, displacement of eye lens

WILEY

Methionine degradation pathway: Deficiency of cystathione β -synthase leads to homocystinuria / homocysteinemia

Homocystinuria

Treatment:

- Oral administration of vitamins B₆, B₁₂ and folate
- Vitamin B₆ is a cofactor for cystathionine βsynthase
- Methionine-restricted diet

Homocysteinemia

Hyperhomocysteinemia is also associated with:

Neural tube defect (spina bifida)
Vascular disease (atherosclerosis)
Heart disease

WILEY

Methionine degradation pathway: Deficiency of cystathione β synthase leads to hyperhomocystinuria / hyperhomocysteinemia

Alkaptonuria

- A rare disease of tyrosine degradation
- Due to deficiency of homogentisic acid oxidase
- Homogentisic acid is accumulated in tissue and cartilage
- Homogentisic aciduria: elevated homogentisic acid in urine

Alkaptonuria

- Homogentisic acid is oxidized to dark pigment in urine over time
 Arthritis, black pigmentation of cartilage and tissue
- Usually asymptomatic until adulthood
- Restricted intake of tyrosine and phenylalanine reduces homogentisic acid and dark pigmentation

NH3 CH2-CH-COO-HO Tyrosine a-ketoglutarate Degradation of tyrosine glutamate Deficiency of homogentisic acid 0 CH₂ - COO--c oxidase leads to alkaptonuria HO p-Hydroxyphenylpyruvate 00 CO2 p-hydroxyphenylpyruvate oxidase OH CH2COO-HO Homogentisate 02 Homogentisate oxidase HC \cap C H COO · CHo 0 Maleylacetoacetate