# Transplantation

Immunology Unit College of Medicine King Saud University

## Objectives

- To understand the diversity among human leukocyte antigens (HLA) or major histocompatibility complex (MHC)
- To know the role of HLA antigens in transplant rejection
- To be familiar with types of immune responses mediating transplant rejections and importance of tissue matching
- To understand the principles of management after transplantation

## Major Histocompatibility Complex and Transplantation

- Major histocompatibility complex (MHC) proteins were discovered for the first time with the advent of tissue transplantation
- The success of tissue and organ transplantation depends upon the donor's and recipient's "human leukocyte antigens" (HLA) encoded by HLA genes
- These proteins are allo-antigens

### MHC Class I and II Proteins

- MHC Class I are glycoproteins found on surface of virtually all the nucleated cells
  - Cytotoxic T cell kills virus infected cells in association with class I MHC proteins
- MHC Class II glycoproteins are normally found on the surface of antigen presenting cells (marophages, B cells, dendritic cells and Langerhans cells)
  - Helper T cell recognize antigen in association with class II
     MHC proteins

# Major Histocompatibility Complex and Transplantation

- Genes for HLA proteins are clustered in the MHC complex located on the short arm of chromosome 6
- Three genes HLA-A, HLA-B and HLA-C code for Class I MHC proteins
- HLA-D loci encode for Class II MHC proteins ie, DP, DQ and DR

# Major Histocompatibility Complex and Transplantation

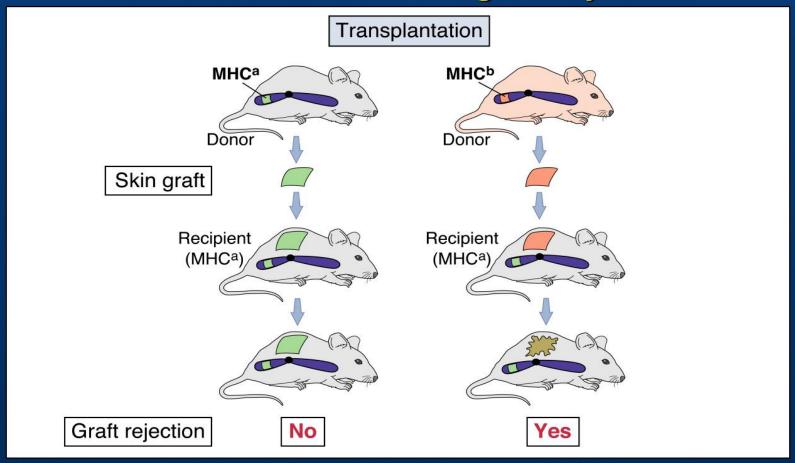
Each individual has two "haplotypes" i.e, two sets of these genes one paternal and one maternal

| MHC class        | I     |       |       | =                      |    |    | III            |                        |
|------------------|-------|-------|-------|------------------------|----|----|----------------|------------------------|
| Region           | Α     | В     | С     | DP                     | DQ | DR | C4, C2, BF     |                        |
| Gene<br>products | HLA-A | HLA-B | HLA-C | DP                     | DQ | DR | C'<br>proteins | TNF-<br>α<br>TNF-<br>β |
| Polymorphisms    | 47    | 88    | 29    | More than 300<br>HLA-D |    |    |                |                        |

### Minor HLA genes and Transplantation

Minor HLA genes – unknown

They mount a weak immune response


Play role in chronic rejection of a graft

There are no laboratory tests to detect minor antigens

### Transplantation antigens

Slide 4-2

#### MHC alleles control allograft rejection

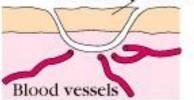


From Abbas, Lichtman, & Pober: Cellular and Molecular Immunology. W.B. Saunders, 1999, Fig. 4-2a

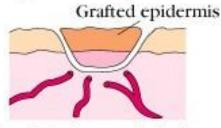
# **Transplantation**

- Types of transplants:
  - Autografts, Autologous grafts
    - Donor and recipient are same individual
    - Common in skin grafting; bone marrow
  - Syngeneic grafts or (isograft)
    - Donor and recipient are genetically identical
    - Animal models; identical twins

# Transplantation

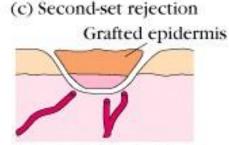

- Types of transplants:
  - Allogeneic grafts
    - Donor and recipient are same species, but genetically unrelated
    - Common heart, lung, kidney, liver graft
  - Xenogeneic grafts
    - Donor and recipient are different species
  - Artificial grafts

# Transplantation (Rejection)


- Major Barrier to transplantation is the immune response
  - T cells play primary role
  - B cells can/do play a role
  - Classic adaptive/acquired immune response
    - Memory
    - Specificity

## 1st set versus 2nd set reactions

(a) Autograft acceptance Grafted epidermis



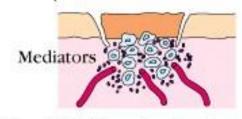

Days 3-7: Revascularization



(b) First-set rejection

Days 3-7: Revascularization

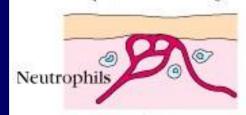



Days 3-4: Cellular infiltration



Days 7-10: Healing




Days 7-10: Cellular infiltration

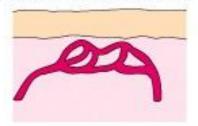



Necrotic tissue

Days 5-6: Thrombosis and necrosis

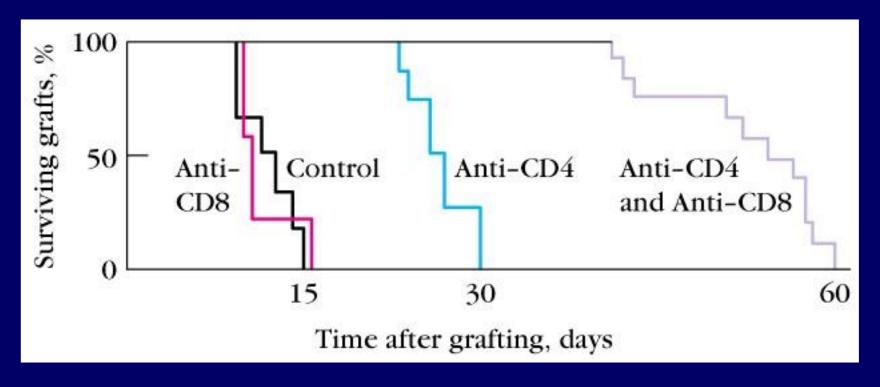
Blood clots




Days 12-14: Resolution



Days 10-14: Thrombosis and necrosis




Necrotic tissue

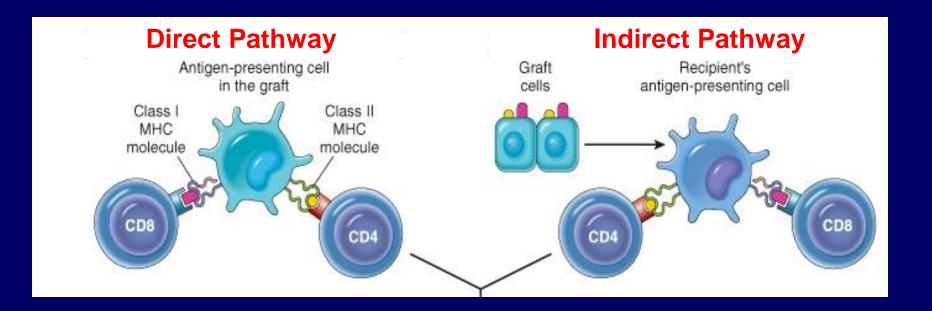


Blood clots
Damaged blood vessels

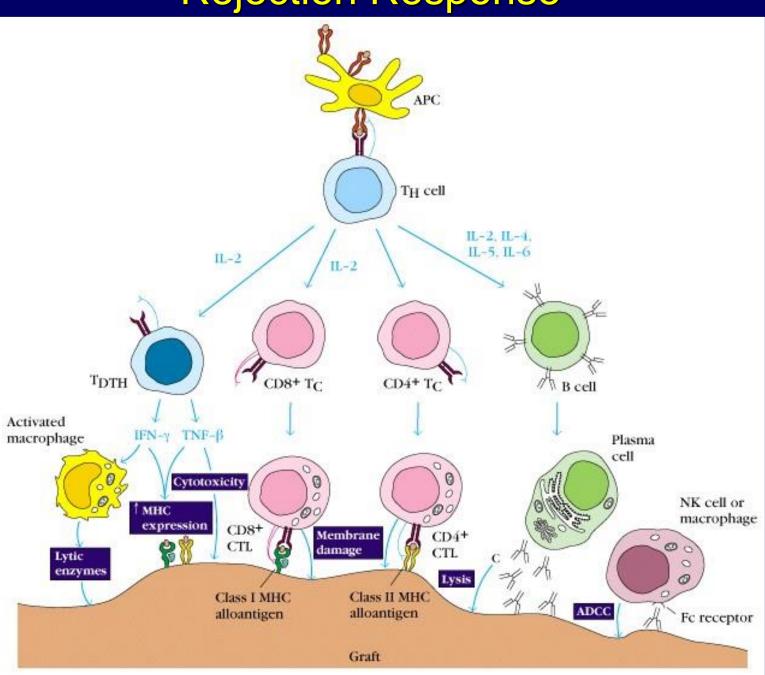
## Role of CD4+ versus CD8 T+ cells



Injecting recipient mice with monoclonal antibodies to deplete one or both types of T cells

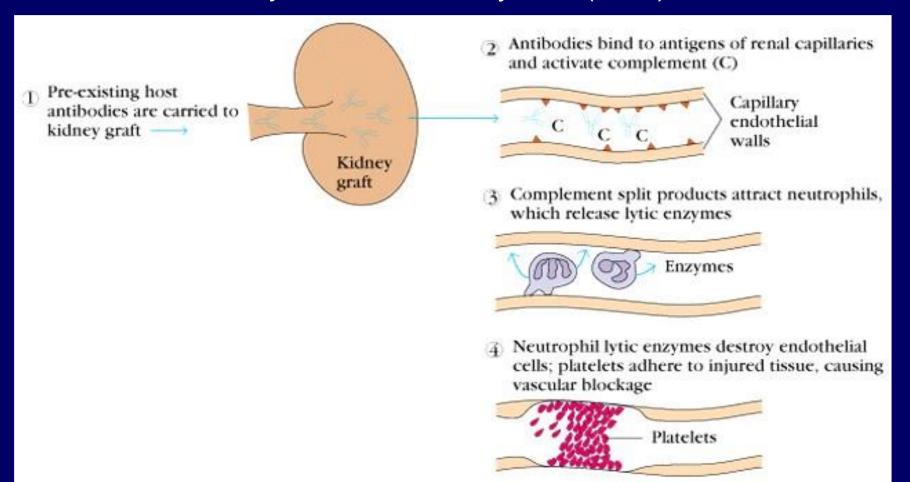

## Transplantation

- T cells play primary role in 1st and 2nd set rejection reactions
  - Nude mice accept allografts (no T cells due to genetic modification resulting in absent thymus)
  - B cell deficient mice reject allografts




Nude mouse has a transplant of rabbit skin

## Mechanisms involved in Graft Rejection




### Rejection Response



### Clinical manifestations of graft rejection

- I. Hyperacute rejection: very quick
- II. Acute rejection: about 10 days (cell mediated)
- III. Chronic rejection: months-years (both)



# Chronic Rejection

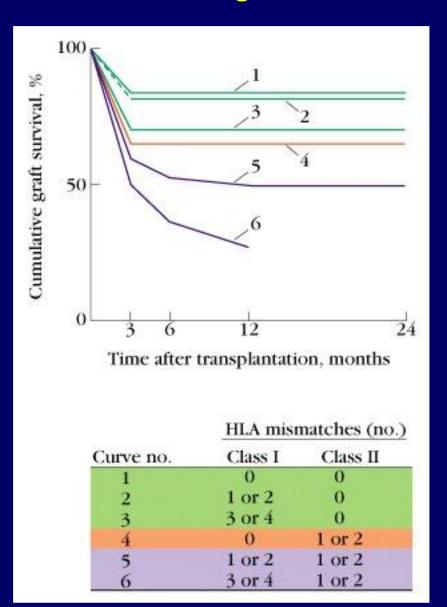
- This occurs months to years after engraftment
- Main pathologic finding in chronic rejection is atherosclerosis of the vascular endothelium

- Main cause of chronic rejection is not known
  - Minor histo-compatibility antigen miss match

## Graft-versus-Host (GVH) Reaction

- Occurs in about two thirds of bone marrow transplants
- Occurs because grafted immunocompetent T cells proliferate in the irradiated immunocompromised host and reject cells with foreign proteins resulting in sever organ dysfunction
- Donor's Tc cells play a major role in destroying the recipient's cells
- Symptoms are: maculopapular rash, jaundice, hepatosplenomegaly and diarrhea
- GVH reactions usually end in infections and death

## **HLA Typing in the Laboratory**


Prior to transplantation laboratory test commonly called as
 HLA typing or tissue typing to determine the closest
 MHC match between the donor and recipient is performed

#### Methods

- DNA sequencing by Polymerase Chain Reaction (PCR)
- Serologic Assays
- Mixed Lymphocyte Reaction (MLR)
- Crossmatching (Donor) lymphocytes +(Recipient) serum + complement.

#### **Tissue Matching**

#### Effect of HLA class I & II matching on survival of kidney grafts



## Tissue Matching

#### Cornea

From cadaver Immunosuppression not required 40,000 transplants per year

#### Lung

From brain-dead donor Procedure recently developed; little data available 845 transplants in 1998 Often heart/lung transplant (45 in 1998)

#### Heart

From brain-dead donor HLA matching useful but often impossible Risk of coronary artery damage, perhaps mediated by host antibody 2,340 transplants in 1998

#### Liver

From cadaver Surgical implantation complex Resistant to hyperacute rejection Risk of GVHD 4,450 transplants in 1998

#### Skin

Mostly autologous (burn victims) Temporary grafts of nonviable tissue Allogeneic grafts rare, require immunosoppression

#### Blood

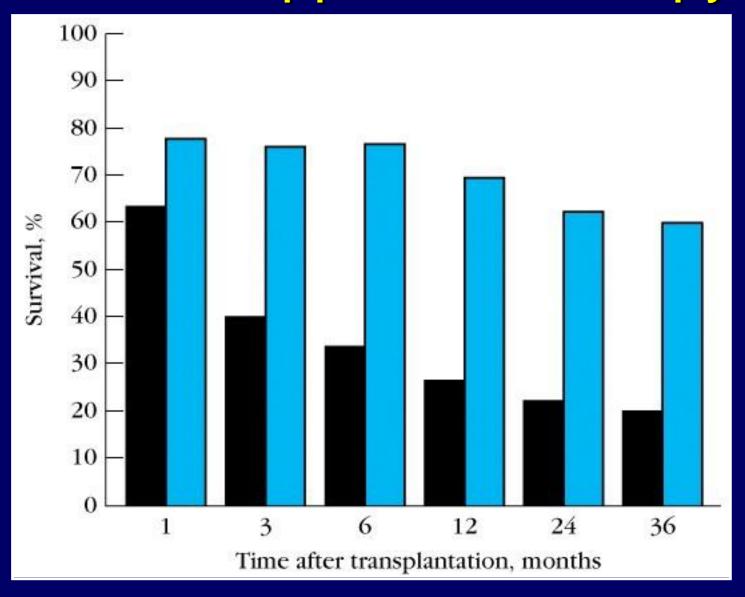
Transfused from living donor ABO and Rh matching required Complications extremely rare An estimated 14 million units used each year

#### Pancreas

From cadaver
Islet cells from organ sufficient
253 transplants in 1998
Increasingly, panreas/kidney transplant
for advanced diabetes (965 in 1998)

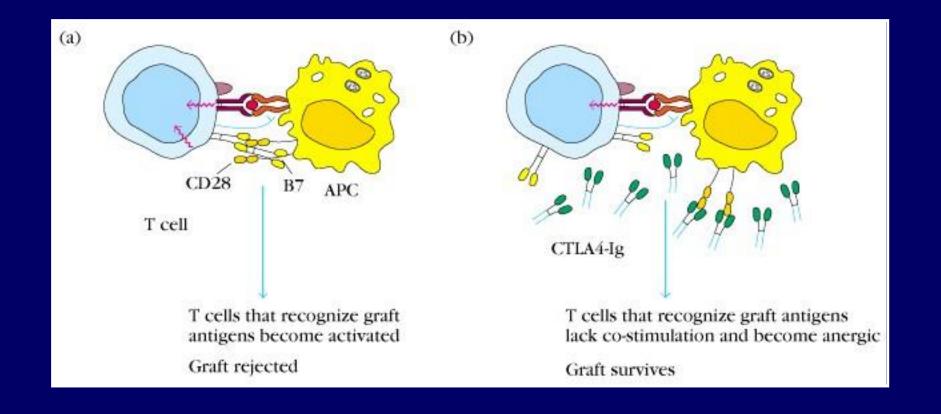
#### Kidney

From live donor or cadaver ABO and HLA matching useful Immunosuppression usually required Risk of GVHD very low 11,900 transplants in 1998


#### Bone marrow

Needle aspiration from living donor Implanted by IV injection ABO and HLA matching required Rejection rare but GVHD a risk

## General Immunosuppression Therapy


- 1) Mitotic inhibitor: azathioprine (pre & post)
- 2) Corticosteroids
- 3) Cyclosporin
- 4) Total lymphoid irradiation

# Immunosuppresive Therapy



## Specific Immuno-suppression therapy

- a) Monoclonal antibodies against T cell components or cytokines
- b) Agents blocking co-stimulatory signal



## Immuno-suppresive Therapy

### Downsides

- Must be maintained for life
- Toxicity
- Susceptibility to infections
- Susceptibility to tumors

# Take home message

- HLA or MHC molecule miss-match can stimulate humoral and cell mediated immunity which is the main cause of rejection of transplants
- Cell mediated immune responses play a major role in transplant rejection
- Tissue matching particularly for HLA-D antigens is important for successful transplantation
- Immuno-suppresive therapy is usually required after transplantation

# Thank you