Renal Physiology 3: Renal Clearance

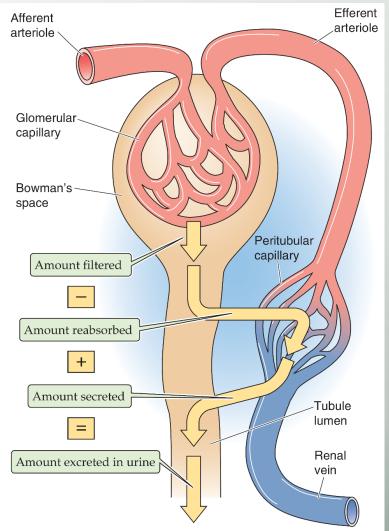
Ahmad Ahmeda

aahmeda@ksu.edu.sa

Learning Objectives:

- Describe the concept of renal plasma clearance.
 Use the formula for measuring renal clearance.
 Use clearance principles for inulin, creatinine etc. for
- determination of GFR.
- Explain why it is easier for a physician to use creatinine clearance Instead of Inulin for the estimation of GFR.
- Describe glucose and urea clearance.
- Explain why we use of PAH clearance for measuring renal blood flow.

How to measure GFR?


Clearance method

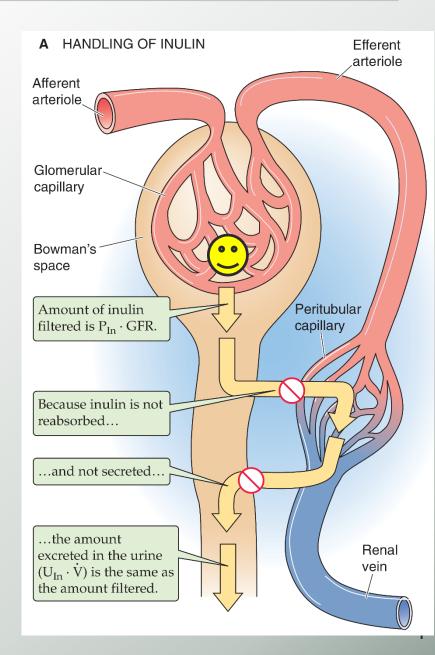
Volume of plasma which is completely cleared of a substance per unit time.

amount <u>excreted</u> = amount <u>filtered</u> – amount reabsorbed + amount secreted

amount <u>filtered</u> per minute = GFR . P_x (filtered load)

amount <u>excreted</u> per minute = $\tilde{V} \cdot U_x$ (excretion rate)

Clearance = GFR

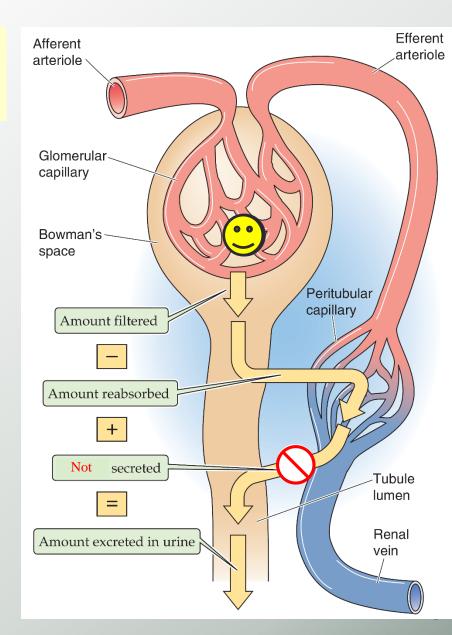

Criteria of substance:

- 1. freely filtered
- 2. <u>NOT</u> reabsorbed, <u>NOT</u> secreted or metabolized in the nephron

amount <u>filtered</u> per minute = amount <u>excreted</u> per minute

e.g., inulin

$$GFR \cdot [P]_{Inulin} = [U]_{Inulin} \cdot \tilde{V}$$
$$CI_{Inulin} = GFR = \frac{[U]_{Inulin} \cdot \tilde{V}}{[P]_{Inulin}}$$


For substances **reabsorbed** by the kidney:

amount <u>filtered</u> per minute > amount <u>excreted</u> per minute

$$GFR.[P]_x > [U]_x.\tilde{V}$$

GFR . $[P]_x$ – Absorbed 'T' = $[U]_x$. \tilde{V}

- Cl_{sub} < Cl_{inulin} Absorption from nephrons is occurring
 Cl = <u>0</u> for glucose & amino acids (normally).
- e.g., glucose, sodium, urea.

For substances <u>secreted</u> by the kidney:

PAH, creatinine.

amount <u>filtered</u> per minute < amount <u>excreted</u> per minute

 $GFR.[P]_x < [U]_x.\tilde{V}$

GFR . $[P]_x$ + Secreted 'T' = $[U]_x$. \tilde{V}

12 mg/min < 60 mg/min

Cl_{sub} > Cl_{inulin} Secretion into nephrons is occurring

Q: Giv	ven the following information for a freely filterable substance GFR = 120 mL/min Plasma concentration = 3 mg/mL Urine flow rate = 2 mL/min Urine concentration = 10 mg/mL we can conclude that:
a)	the kidney tubules reabsorbed 340 mg/min
b)	the kidney tubules reabsorbed 200 mg/min
c)	the kidney tubules secreted 200 mg/min
d)	the kidney tubules secreted 340 mg/min
e)	Net transport is 0 mg/min

Amount Filtered per minute = (GFR X [Sub]_{plasma})

= 120 ml/min X 3 mg/ml = **<u>360 mg/min</u>**

Amount excreted per minute = ([sub]_{urine} X Urine flow rate)

= 2 ml/min X 10 mg/ml = **<u>20 mg/min</u>**

Amount Filtered per minute > Amount excreted per minute

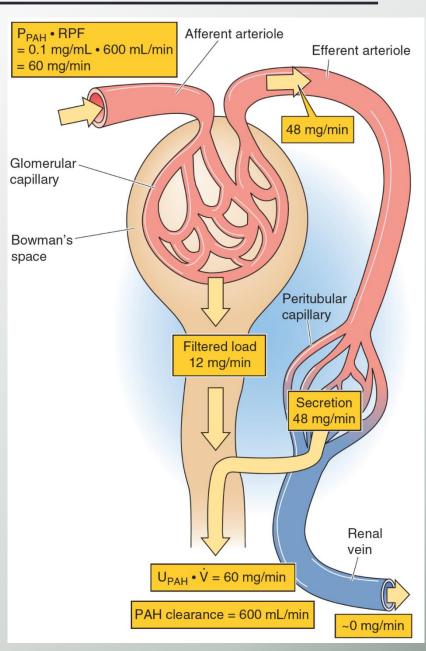
Amount transported per minute = Filtered – Excreted

= 360 - 20 = **340 mg/min**

Clearance method to measure RPF

Criteria of substance used

- filtered + secreted
- <u>NOT</u> <u>reabsorbed</u>



Amount of PAH excreted = Amount filtered + amount secreted

<u>100%</u> removed on passage through the kidney:

$$CI_{PAH} = RPF = \frac{[U]_{x} \cdot \tilde{V}}{[P]_{x}}$$

 $RPF = RBF \times (1-hematocrit)$

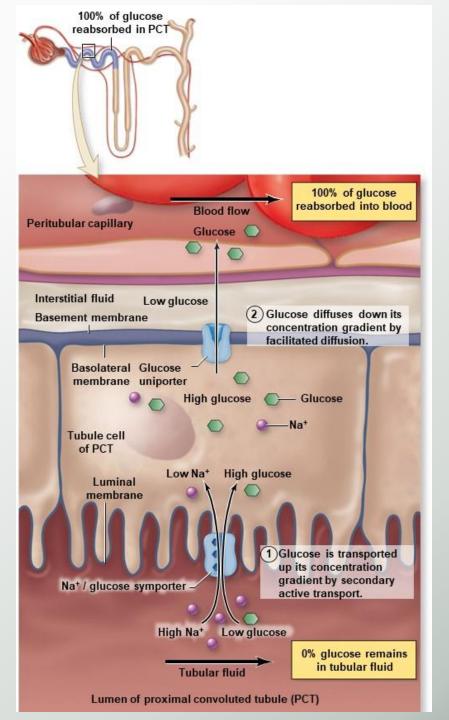
A patient is infused with PAH to measure renal blood flow. She has a urine flow rate of **1 mL/min**, a plasma [PAH] of **1 mg/mL**, a urine [PAH] of **600 mg/mL**, and a hematocrit of **45%**. What is her RBF?

- a) 555 mL/min
- b) 600 mL/min
- c) 660 mL/min
- d) 1,091 mL/min
- e) 1,333 mL/min

$$CI_{PAH} = RPF = \frac{[U]_x \cdot \tilde{V}}{[P]_x} = \frac{600 \text{ mg/mL x 1 mL/min}}{1 \text{ mg/min}} = 600 \text{ mL/min}$$

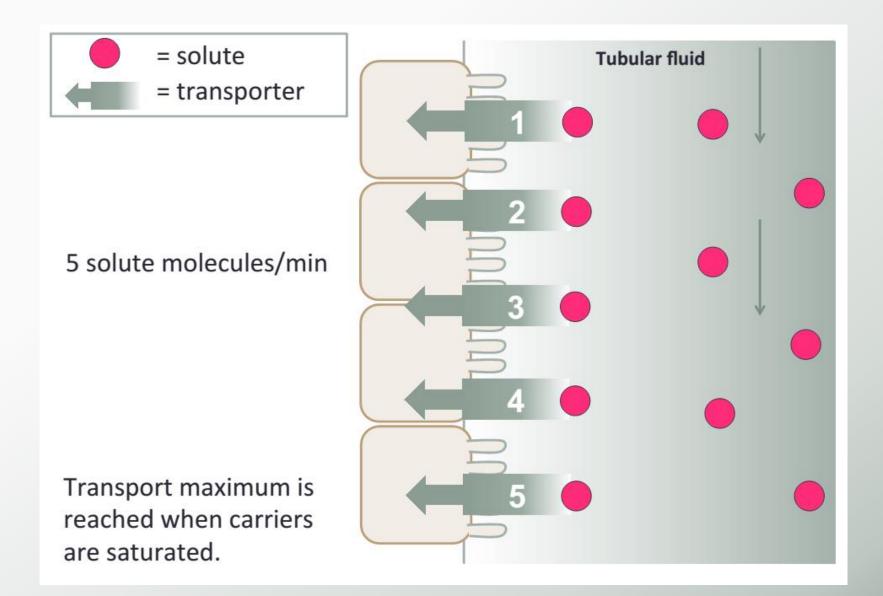
 $RPF = RBF \times (1-hematocrit)$

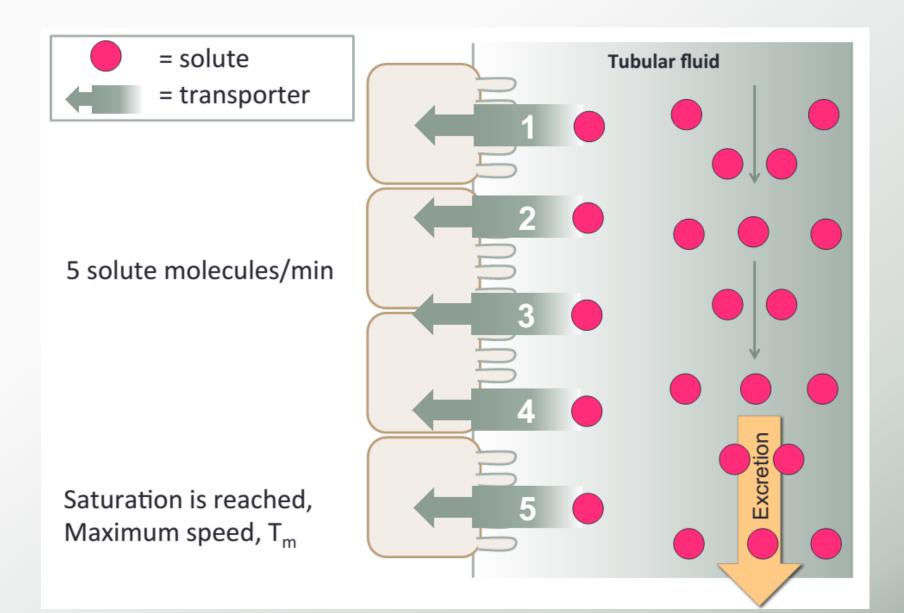
RBF = 600 / (1-0.45) = 1,091 mL/min


Glucose Reabsorption

From tubular lumen to tubular cell: Sodium cotransporter (Carrier-mediated secondary active transport).

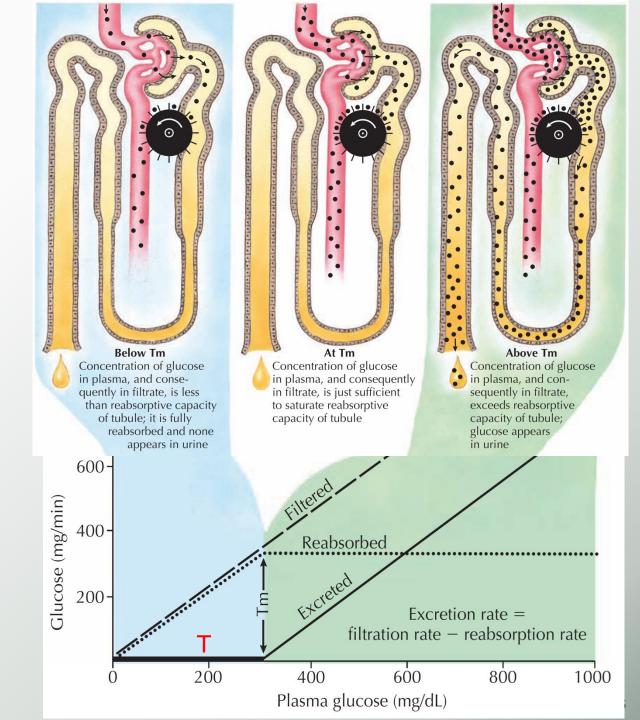
>Uphill transport of glucose driven by electro-chemical gradient of sodium, which is maintained by Na-K pump presents in basolateral cell membrane.

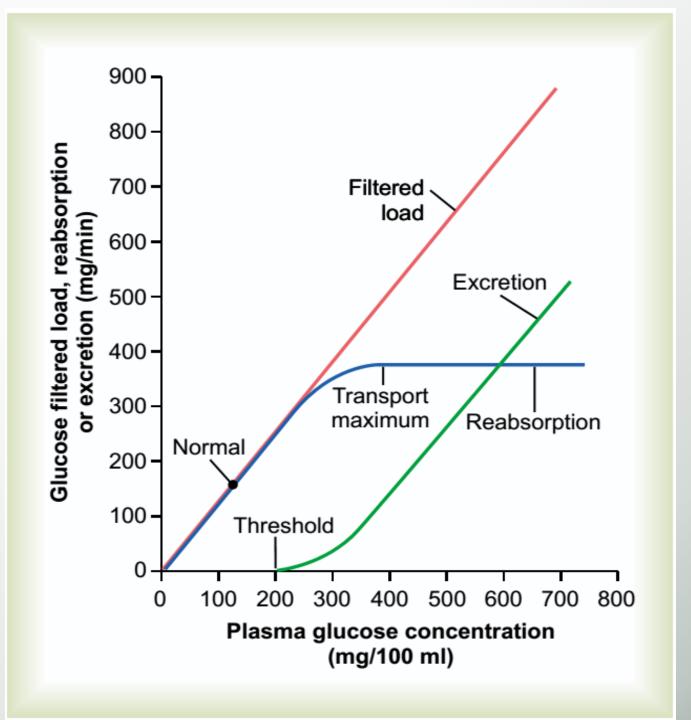

From tubular cell to peritubular capillary: Facilitated diffusion (Carrier-mediated passive transport)


Glucose Reabsorption

Tubular transport maximum

- It is the maximal amount of a substance (in mg) which can be transported (reabsorbed or secreted) by tubular cells/min.
- Many substances are reabsorbed by carrier mediated transport systems e.g. glucose, amino acids, organic acids...
- Carriers have a maximum transport capacity (T_m) which is due to saturation of the carriers. If T_m is exceeded, then the excess substrate enters the urine.
- Glucose is freely filtered, so whatever its [plasma] that will be filtered.




Tubular Transport Maximum

- The plasma concentration at which the Tmax of glucose is reached and the glucose is first appearing in the urine is called Renal Plasma Threshold of glucose.
- (If plasma [glucose] = 275 mg/dl, 275 mg/dl will be filtered, 180mg/dl reabsorbed and 95 mg/dl may be excreted.)
- Kidney does NOT regulate [glucose], (insulin and glucagon). Normal [glucose] of 90 mg/dl, so T_m is set way above any possible level of (non-diabetic) [glucose] at 375 mg/min. Thus, ensure that all this valuable nutrient is normally reabsorbed. The appearance of glucose in the urine of diabetic patients = glycosuria, is due to failure of insulin, NOT, the kidney.

Once T_m is reached for all nephrons, further \uparrow in tubular load are not reabsorbed, but are then excreted.

Threshold (T) is the plasma conc. at which tubular load just exceeds T_m for reabsorption, where below threshold all solute molecules are reabsorbed, and above threshold, some solutes are not

