Renal Physiology 5 Transport Processes in Nephron

Ahmad Ahmeda aahmeda@ksu.edu.sa

Learning Objectives:

- Define tubular reabsorption, tubular secretion, transcellular and paracellular transport.
- Identify and describe mechanisms of tubular transport.
- Describe tubular reabsorption of sodium and water.
- Revise tubulo-glomerular feedback and describe its physiological importance.
- Identify and describe mechanism involved in Glucose reabsorption.
- Study glucose titration curve in terms of renal threshold, tubular transport maximum, splay, excretion and filtration.
- Identify the tubular site and describe how Amino Acids, HCO3-, P04- and Urea are reabsorbed.

Reabsorption

Copyright © 2016 by Elsevier, Inc. All rights reserved.

Bulk flow results from the imbalance of osmotic or hydrostatic forces at the peritubular capillary.

Transport process in the nephron

Proximal convoluted tubule

Early PCT

А

- **~70%** of Na⁺, Cl⁻, K⁺ and water
- 1. <u>NHE</u> (Na⁺ for H⁺, HCO₃⁻ reabsorbed.
- 2. <u>Symporters</u>: Na+glucose, Na+-amino acid, Na+-Pi, Na+-lactate

Organic molecules will be completely removed from the filtrate in the first half of the PT

Absorption in PCT The *amount* of Na⁺ in the tubular fluid ↓↓ along PCT

The [Na⁺] (and total osmolarity) remains relatively **constant**

Because water permeability of PCT is so great → water reabsorption keeps pace with Na⁺ reabsorption.

Late PCT

Na⁺ Reabsorbed with Cl⁻ Why? <u>due to different transport</u> <u>mechanisms in late PCT</u>, <u>lack of organic molecules</u>

Transcellular and Paracellular

Protein reabsorption

Peptide hormones, small proteins & amino acids

Endocytosis either intact or after being partially degraded by enzymes.

Has a maximum capacity - too much protein filtered = proteinuria

Organic anion/cation secretion **PCT**

Endogenous compounds e.g. cAMP, Bile salts, Creatinine, adrenaline, noradrenailne.

Exogenous compounds e.g. Penicillin, NSAIDs, Morphine, PAH.

Small proportion are eliminated via **excretion** after **filtration** alone. Why?

Bind to plasma proteins - not readily filtered.

All are **secreted** from the peritubular capillary into tubular fluid.

HCO₃⁻ reabsorption

>The renal tubules are poorly-permeable to HCO_3^- . However, it is still reabsorbed but in the form of CO_2 (to which the tubules are very highly permeable).

This occurs through the following steps:

- 1.H⁺ is formed inside the cells then secreted in the tubular fluid.
- 2.H⁺ combines with HCO_3^- in the tubular fluid forming H_2CO_3 .

HCO₃⁻ reabsorption

- 3. By activity of the **carbonic anhydrase enzyme** (C.A.) in the tubular cells, H_2CO_3 dissociates into $CO_2 \& H_2O$.
- 4. CO_2 diffuses into the cells where it combines with H_2O (by activity of an intracellular C.A.), forming H_2CO_3 which dissociates into $HCO_3^- \& H^+$.
- 5. HCO_3^- passively diffuses into the interstitial fluid (then to the blood) while H⁺ is secreted into the tubular fluid to help more reabsorption of HCO_3^- .

HCO₃⁻ reabsorption

Factors affecting HCO₃reabsorption:

Arterial Pco₂
 Plasma[K⁺]
 Plasma Aldosterone.
 Plasma [Cl⁻]

Urea Reabsorption

Normal plasma level of urea 2.5-6.5 mM/L (15-39 mg/100ml)

Mechanism of urea reabsorption:

>About **40-70%** of filtered load of urea is reabsorped in:

- Second half of PCT.
- Medullary CT and CD (ADH dependent)

>Due to water reabsorption in the first half of PCT, the conc. of urea is increased in the second half and urea is reabsorbed by simple diffusion (downhill)

Loop of Henle

25% of filtered **NaCI** and **K**⁺ is reabsorbed as well as Ca²⁺, HCO₃⁻ in thick ascending limb (TAL)

The ascending limb is impermeable to water (diluting segment).

15% water absorbed in thin descending limb (permeable to water)

The descending thin limb does not reabsorb NaCl

Solute absorption:

- 1) Transcellular (50%)
- 1Na+-2CI--1K+ cotransporter
- NHE

Transport mechanisms for NaCl reabsorption in the thick ascending limb of Henle's loop.

2) Paracellular (50%) Loss of NaCl in tubule $\Rightarrow \uparrow +ve$ compared to blood drives absorption

Distal convoluted tubule & collecting duct

DCT & CD

Reabsorb **8%** of filtered NaCl, ~10% water (**needs ADH**) Some K⁺, H⁺ secreted *into* tubule

2 cells

- principle cells: reabsorb Na⁺, water, secrete K⁺
- 2) intercalated cells: secrete or reabsorb H⁺ (opposite for HCO₃⁻) [important for acid base], reabsorb K⁺
- Na⁺ diffuses via selective channels
- K⁺ secreted down concentration, reabsorbed by an H⁺/K⁺-ATPase located in the apical cell membrane

Late DCT

Blood

ALDOSTERONE ↑ NaCl reabsorption

the amount of Na+/K+-ATPase in the basolateral membrane

How?

 expression of the ENaC in the apical cell membrane

