

Renal Function Tests

Know the physiological functions of the kidney.

 $(\checkmark$

- Describe the structure and function of the nephron.
- Identify the biochemical kidney function tests with special emphasis on when to ask for the test, the indications and limitations of each kidney function tests.
 - \mathcal{Y} Interpret the kidney function tests properly.

Contents:

Functional units

- Kidney functions
- Routine kidney function tests (KFTs):
- 🛧 Serum creatinine
- 🛧 Creatinine clearance
- ★ Cockcroft-Gault formula for GFR estimation
- 🛧 Serum Urea

\swarrow Kidney function tests :

- 🛧 Serum creatinine 🛧 Creatinine clearance
- ★ GFR estimation 🔸 Serum Urea

- → because it"s
- 🖈 Constant 🛛 🖈 Endogenous
- ★ Freely filtered 🛧 Not reabsorbed but 10% secreted

\checkmark Creatinine clearance (GFR) = $\frac{U \times V}{P}$

→ Normal range

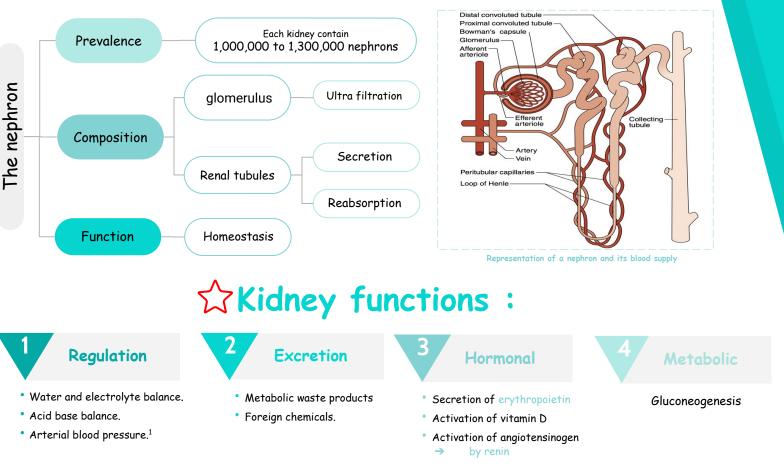
★ Adults: 110 ml/min ★ Elderly: 70 ml/min

→ Limitations

Urine collection

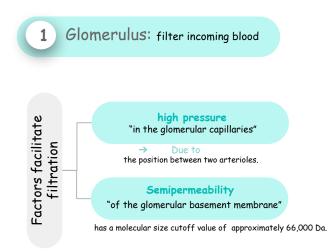
ightarrow Why do we use Creatinine clearance?

- ★ Indication of early impairment
- 🖈 Monitor toxicity
- 🛧 Follow up
- 🖈 Renal transplant


ightarrow Urea is the inferior test in KFT

- → why?
- \bigstar Affected by diet
- \star Affected by any disease that increase catabolism
- \star 50 % of urea filtered will be reabsorbed from the tubules.

Cockcroft-Gault limitations:


- 🖈 Body weight
- 🛧 vegetarian people
- ★ Low muscle mass

Functional units of kidney:

★ a complex apparatus comprised of <u>five</u> basic parts:

3 Loop of Henle

Facilitate reabsorption of:

• <mark>Water</mark> • Sodium • <mark>chloride</mark>.

Osmolality in medulla in this portion of nephron increases steadily from the corticomedullary junction <u>inward</u>.

a. Returns valuable substances back to the circulation.

75% of:

• Water • Sodium • chloride.

Almost 100% of

Amino acids
 vitamins
 Proteins

100% of

• Glucose (up to the renal threshold) *

Varying amounts of:

- Urea
- Uric acid

Drugs "such as penicillin"

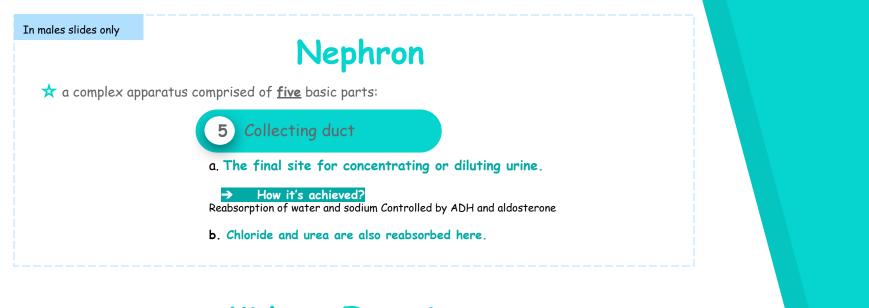
- Ions:
- ★ Magnesium ★ Calcium ★ Potassium.
- **b**. Secretes products of kidney tubular cell metabolism
 - Hydrogen ions

• The filtrate entering this section of the nephron is close to its final composition.

• Effects small adjustments to achieve electrolyte and acid-base homeostasis (under the hormonal control of both antidiuretic hormone (ADH) and aldosterone)

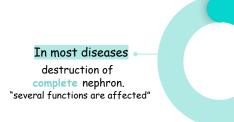
DCT is shorter than PCT, with 2 or 3 coils that connect to a collecting duct.

Transported Passively "doesn't require energy" The rest are transported actively "require energy"



Renal threshold:

the concentration of a substance dissolved in the blood above which the kidneys begin to remove it into the urine

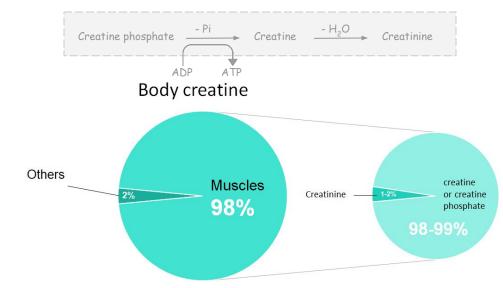

> Renal threshold for glucose: 180 mg/dL

When the renal threshold of a substance is exceeded, reabsorption of the Substance by the proximal Convoluted tubule is incomplete

Kidney Function test

Why to test the renal functions? Many diseases affect renal function.

In others


Selective impairment of glomerular function or one or more of tubular functions.

Measurements:

- Serum creatinine (Cr).
- Creatinine clearance.
- Serum urea.
- Electrolytes

Serum creatinine

- Creatinine is the end product of creatine catabolism.
- 98% of the body creatine is present in the muscles where it functions as store of high energy in the form of creatine phosphate.
- About 1-2% of total muscle creatine or creatine phosphate pool is converted daily to creatinine through the spontaneous , non enzymatic* loss of water or phosphate.

* This makes creatinine in kidney tests highly specific as there are no enzymes that can be defected or regulated.

It's levels depend only on renal clearance

Glomerular filtration rate (GFR) * The volume of blood filtered per minute.

provides a useful index of the number of functioning glomeruli

Gives an estimation of the **degree** of renal (و ہ) impairment by disease

Criteria of substances used in clearance tests that accurately measure GRF: ★ requires determination of the concentration in plasma and urine

Criteria	Creatinine
Freely filtered at glomeruli	\bigotimes
Not reabsorbed by renal tubules	\bigotimes
Not secreted by renal tubules	10% of urinary creatinine is secreted
Constant concentration in plasma throughout urine collection.	remains constant throughout adult life.
Present endogenously. (not affected by diet) * Better	
Easily measured.	\bigotimes

Creatinine clearance

Clearance : The volume of plasma cleared from the <u>substance</u> excreted in urine per minute.

Clearance (ml/min) = P

- U: concentration of creatinine in urine (µmol/L)
- V: volume of urine per min¹
- P: concentration of creatinine in plasma (µmol/L)

usually about 110 ml/min

20-40 years adults

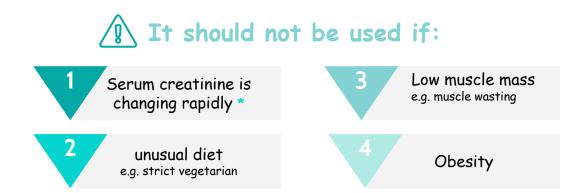
falls slowly but progressively to about 70 ml/min ²

the GFR should be related to surface area, when this is done, results are similar to those found in young adults.

Dr's notes :

amount per minute

1. Urine is collected through 24h period then it's mathematically converted to


2. due to decrease in muscle mass

Cockcroft-Gault Formula

An alternative and convenient method that employ a formula devised to calculate creatinine clearance using parameters such as:

- Serum creatinine level
- Sex
- Weight of the subject.

☆	GFR =	K (140-age) X Body weight	K: a constant that varies with sex 1.23 for males
		Serum creatinine (µmol/L)	1.04 for females. it's used as females have a relatively lower muscle mass.

* For example in athlete (body building) ppeople as the muscle mass is changing.

Serum creatinine is A Better KFT Than creatinine clearance because :

Serum creatinine is more accurate because creatinine clearance is measured by using a 24-hour urine collection

throughout adult life

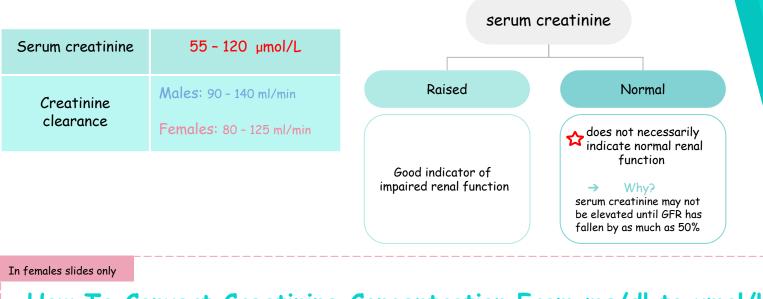
Serum creatinine level is constant

this does introduce the potential for errors in terms of completion of the collection¹

Creatinine Clearance Is Only Recommended In The Following Conditions :

Patients with early (minor) renal disease.

Assessment of possible kidney donors.


🔨 Detection of renal toxicity of some nephrotoxic drugs.

<u>Both</u> serum creatinine and creatinine clearance are used as kidney function tests to :

- Confirm the diagnosis of renal disease.
- Give an idea about the severity of the disease.
- Follow up the treatment.

Normal Adult Reference Values

Urinary excretion of creatinine is 0.5 - 2.0 g per 24 hours in a normal adult, varying according to muscular weight.

How To Convert Creatinine Concentration From mg/dl to µmol/L? THE CONVERSION FACTOR IS (88.4) 1 mg/dl = 88.4 µmol/l

Serum Urea

Urea is formed in the liver from ammonia released from deamination of amino acid. (Urea cycle)

Normal range (2.5-6.6 mmol/L) in adult

As a kidney function test, serum urea is inferior to serum creatinine because:

High protein diet increases urea formation

Any condition of increased proteins catabolism will increase urea formation.

Cushing syndrome

2

3

- diabetes mellitus
- Thyrotoxicosis
 Starvation

50% or more of urea filtered at the glomerulus is passively reabsorbed by the renal tubules

Dehydration can increase urea *

Normal Values Of Internal Chemical Environment Controlled By The Kidneys				
SODIUM	135 - 145 mEq/L			
POTASSIUM	3.5 - 5.5 mEq/L			
CHLORIDES	100 - 110 mEq/L			
BICARBONATE	24 - 26 mEq/L			
CALCIUM	8.6 - 10 mg/dl			
MAGNESIUM	1.6 - 2.4 mg/dl			
PHOSPHORUS	3.0 - 5.0 mg/dl			
URIC ACID	2.5 - 6.0 mg/dl			
рН	7.4			
CREATININE	0.8 - 1.4 mg/dl			
BUN (Blood Urea Nitrogen)	15 - 20 mg/dl			

Quiz

MCQs :

Q1: One of the hormonal a) Electrolyte balance by		n c) Excretion of w o	aste products d) Gluconeogenesis		
Q2: Urea formation is increased with a) Diet without meat b) High carbohydrate diet c) Protein anabolism d) Cushing syndrome					
Q3: creatinine clearance i a) 110 ml/min	n people over 80 years b) 70 ml/min		d) 40 ml/min		
Q4: K constant for males a) 1.23	b) 1.74	c) 1.04	d) 1.32		
 Q5: Cockcroft-gault formula should not be used when a) Serum creatinine is constant b) Muscle mass is normal c) The diet is unusual d) BMI is normal 					
Q6: Normal range of seru a) 2.5-7.7 mmol/L		c) 3.6-8.8 mmol/L	d) 2.5-6.6 mmol/L		
 Q7: To measure glomerular filtration you need a substance that is a) Has a limited filtration b) Exogenous c) Endogenous d) Reabsorbed by renal tubules 					
<u>Q8:</u> Creatinine clearance a) Glomerulonephritis b)		or renal impairment	d) Cystitis		

Q1: what are the kidney functions?

Q2: why do we use creatinine in creatinine clearance test?

Q3: why serum urea is inferior to serum creatinine?

<u>Q4</u>: 77 year-old male patient came to the clinic with sudden lower back pain, a serum creatinine analysis was done and the serum creatinine level was 0.55 mg/dL, calculate the glomerular filtration rate knowing that the patient's body weight is 63kg.

★ MCQs Answer key:

) B 2) D 3) B 4) A 5) C 6) D 7) C 8) C

★ SAQs Answer key:

1) Regulation - Excretion - Hormonal Function - Metabolic Functior

2) because its Freely filtered at glomeruli and easily measured

3) High protein diet increases urea formation, Any condition of increased proteins catabolism will increase urea formation,, 50% or more of urea filtered at the glomerulus is passively reabsorbed by the renal tubules.

4) GFR = (K * (140-age) * body weight) / serum creatinine µmol/L To convert mg/dL to µmol/L we need to multiply by 88.4 Serum creatinine = 0.55 * 88.4 = 48.62µmol/L GFR = (1.23 * 63 * 63)/48.62µmol/L GFR=100.408 mL/min ★ Don't study because you need to, study because knowledge is power and they can never take it away from you.

☆ Team members :

Girls team:

- Ajeed Al-rashoud
- 🖈 🛛 Alwateen Alb<u>alawi</u>
- Abeer Alkhodair
- Elaf Almusahel
- Haifa Alessa
- Lama Alassiri
- Lina Alosaimi

Boys team:

- Alkassem binobaid
- Fahad Alsultan
- Fares Aldokhayel

• Nouf Alhumaidhi

- Noura Alt<u>urki</u>
- Nouran Arnous
- 🖈 🛛 Reem Algarni
- Rema Alka<u>htani</u>
- 🕇 🔰 Shahd Alsalamh
- Taif Alotaibi

- Naif Alsolais
- Sultan Alhammad

☆ Team leaders :

Deema Almaziad

Mohannad Algarni