

Lecture (1-3) Renal Function & GFR

Index:

- Text
- Important
- Extra
- Editing file

Functions of the kidneys:

Excretion

- 1. Excretion of nitrogenous wastes (urea, uric acid and creatinine) & other toxins
- 2. Excretion of bioactive substances such as drugs

Regulation

- 1. Regulation of Blood pressure through renin
- 2. Regulation of Acid Base balance
- 3. Regulation of water and electrolytes balance

Production

- 1. Production of erythropoietin to synthesize RBCs
- 2. Production of glucose (gluconeogenesis)
- 3. Production of Vitamin D (1,25-dihydrocholecalciferol)

Anatomy of the kidneys

The Nephron

- Nephrons are the structural and functional units that form urine.
- There are two types of nephrons:
 - 1. Cortical (85%): located in the upper cortex
 - 2. Juxtamedullary (15%): located in the cortex-medullary region (receives 1-2% of RBF)
 - Loop of Henle deeply invade the medulla
 - Responsible in producing concentrated urine
- A nephron is composed of:

Renal Corpuscle	Renal Tubule
1. Glomerulus - Capillary tuft - Fenestrated endothelium 2. Glomerular (Bowman's) capsule - Surrounds the glomerulus - Parietal: structural layer - Visceral:(epithelium) podocytes with filtration slits	1. Proximal convoluted tubules (PCT) - Has microvilli and mitochondria - Reabsorb water + solutes 2. Loop of Henle - Descending: mostly thin layer - Ascending: thin then thick layer 3. Distal convoluted tubule (DCT) - NO microvilli - Function in secretion more than reabsorption 4. Collecting tubules** - Intercalated cells: maintain acid-base balance - Principal cells: maintain water balance ** aren't considered part of the nephron

Juxtaglomerular Apparatus

- The area where the distal tubule lies against the afferent arteriole.
- The JGA consist of three types of cells:

Cell	Characteristics	Function
Juxtaglomerular cells	 Enlarged smooth muscles 	Mechanoreceptors
(JG)	Emarged smooth moscles	Secrete renin
Macula Densa	 Tall distal tubule cells 	Chemoreceptors
Adjacent to JG cells	Tall distal lubule cells	Stimulate JG cells to secrete renin
Extraglomerular	Phagocytic cells	adjust filtration pores (by contracting)
Mesangial cells	 Irregular shaped cells 	Regulate blood flow

Renal Blood Vessels & Blood Flow

- Renal blood flow = 20% of cardiac output
- Blood flow to each kidney (high blood flow rate) = 1200 ml/min.
- We divide the renal blood vessels into:

1. Capillary beds:

- → Glomerulus: produce filtrate that enters renal tubules (highest pressure = 60mmHg)
- → Peritubular: capillary network surrounding the tubules
- → Vasa recta: peritubular capillaries branching from efferent arterioles of the juxtamedullary nephron
- 2. High resistance arterioles (major site of renal resistance):
 - → Afferent: deliver blood to the glomeruli (larger in diameter)
 - Protects glomerulus from systemic fluctuations (sudden changes)
 - → Efferent: deliver blood to peritubular capillaries (remember E = exit)
 - Reinforce glomerulus pressure
 - Reduce hydrostatic pressure in peritubular capillaries

Urine Formation

- The primary function of the kidney is to remove unneeded wastes from the blood to be excreted as urine.
- The basic renal process:

Urinary excretion = Filtration - reabsorption + secretion

Definitions:

- Glomerular Filtration: filtration from the capillaries to the renal tubule
- **Tubular reabsorption:** transfer of substances from the tubules back into the blood that is in the peri-tubular capillaries
- **Tubular secretion:** selective transfer of substances from the peri-tubular capillaries back into the tubules again
- Urine excretion: the elimination of the substances from the body

Filtration Membrane:

- Blood in the glomerulus is separated from Bowman's capsule by a filtration barrier (glomerular membrane) that consists of three layers:
 - 1) Fenestrated capillary endothelium
 - 2) Basement membrane: fused basal laminae
 - 3) Podocytes: epithelial lining of Bowman's capsule with slits (pores)
- Glomerular filtration is **HIGHLY** permeable to water and small solutes
- Glomerular filtration CAN'T filter large proteins (>8 nm/ >70K D) due to their size and
 the repulsion between the protein's negativity such as albumin and the layers'
 negatively charged glycoproteins (type IV collagen and proteoglycans).
- In other words, the filtrate is similar in plasma composition proteins

Glomerular Filtration Rate (GFR)

- GFR is the sum of all filtration rates of functioning nephrons at the glomerulus from the plasma (~20% of renal plasma flow)
- It ranges from 90-140 ml/min (avg. 125) depending on age, sex & body size
- It's a good index of kidney function (GFR < 90 is an indicator of kidney disease)
- GFR is governed by:
 - 1. Total surface area
 - 2. Filtration membrane permeability

Kf: capillary filtration coefficient

3. Net filtration pressure (NFP): pressures exerted by starling forces

$GFR = NFP \times Kf$

- IF GFR is too HIGH → substances can't get reabsorbed and are excreted
 - Causing dehydration and electrolytes depletion
- IF GFR is too LOW → everything gets reabsorbed (more dangerous)
 - Causing Azotemia or high nitrogen-containing substances in blood
- We can calculate the NFP by adding the starling forces, and as we remember the starling forces are the hydrostatic pressure and oncotic pressure
- The capsular oncotic pressure is ZERO since there are no proteins in the filtrate

Regulation of GFR and RBF:

- As we said GFR is very important to be regulated otherwise it may cause dehydration or azotemia
- GFR is controlled by adjusting blood pressure through intrinsic and extrinsic factors:

Intrinsic	Extrinsic
Autoregulation - Tubuloglomerular feedback	Sympathetic control
- Myogenic mechanism	Humoral and pharmacological factors
Hormonal control (renin-angiotensin system)	Physiological stress
Tromonal control (remin-angiorensin system)	Posture

 These factors adjust GFR by constricting or dilating afferent/efferent arterioles to increase or decrease GFR by changing the hydrostatic pressure

Intrinsic: Autoregulation:

- In general, an increase in arterial BP will increase GFR however the body maintains constant GFR over a range of an ABP of 75-160 mmHg by autoregulation (it is an intrinsic property).
- Autoregulation is an intrinsic property that is independent of nerves or hormones.
- When BP <75 mmHg
 - → Filtration is decreased
- When BP = 50 mmHg
 - → Filtration is ceased
- The kidney achieves autoregulation by using TWO mechanisms:
 - (1)Tubuloglomerular feedback
 - (2) Myogenic mechanism

Autoregulation: Myogenic system

- Myogenic mechanism is the intrinsic capability of renal blood vessels to constrict or dilate the vascular smooth muscles through calcium channels.
 - → When BP is high, renal blood vessels constrict to prevent an increase in GFR by decreasing renal flow
 - → When BP is low, renal blood vessels dilate to prevent a drop in GFR by reducing arterial resistance and increasing blood flow.

Autoregulation: Tubuloglomerular Feedback

• In the JGA, the macula densa were sensory cells that can sense changes in ions and stimulate JG cells to increase/decrease renin production.

U GFR

Example: \downarrow ABP of high protein diet

- ↓ in NaCl delivery to DCT
- The macula densa is alerted
- GFR is restored by:
 - 3) Vasodilation of Afferent A
 - 4) Release of renin
- GFR is back to normal

↑ GFR

Example: 1 ABP

- 1 in NaCl delivery to DCT
- The macula densa is alerted
- GFR is restored by:
 - 1) Vasoconstriction of Afferent A
 - 2) Release of adenosine
- GFR is back to normal

Intrinsic: Hormonal Control

Extrinsic: Sympathetic regulation:

- When the sympathetic system is at rest
 - → Renal blood vessels are maximally dilated
 - → Autoregulation mechanisms prevail (overcome)
- When the sympathetic system is in action
 - → Norepinephrine and epinephrine are released
 - → fight or flight mode or cardiogenic shock
 - → Afferent arterioles constrict
 - → filtration is inhibited
 - → Renin-angiotensin mechanism is stimulated.

Note: there's no parasympathetic effect on the kidney

Other Extrinsic Factors:

Factor	Effect	Examples
	Afferent constriction \Downarrow GFR, \Downarrow RBF	Epinephrine and Endothelin
Humoral	Afferent dilation ↑ GFR, ↑RBF	Prostaglandin D,E,I and Nitric Oxide
	Efferent constriction ↑ GFR, ↓ RBF	Angiotensin II

Renal (Plasma) Clearance:

- Renal clearance: is the clearance value of a substance by the kidney per min.
- It is calculated by:

$$Clearance = C_x = \frac{U_x \times V}{P_x}$$

- Cx: clearance of substance x
- **U**_x: urine concentration of substance x

- $C_x \times P_x = amount \ filtered$
- $U_x \times V = amount \ excrteted$
 - **V:** urine flow rate (ml/min)
- Px: plasma concentration of substance x
- Plasma clearance tests can be used for (advantages):
 - 1. Measurement of GFR
 - 2. Measurement of RBF
 - 3. Renal handling of different substances
- To calculate GFR, we need to use an exogenous substance that meets the following criteria:
 - 1. Remains in plasma (doesn't enter RBCs)
 - 2. Doesn't affect renal function and isn't toxic
 - 3. Freely filtered (not metabolized, reabsorbed, nor secreted by the kidney Fig. A)
 - 4. Easily measured in plasma & urine
- If the substance used followed these criteria, its clearance value = GFR

Amount filtered = Amount excreted

Substances used to measure GFR

If a substance follows the previous criteria, then:

$$GFR = \frac{[sub]_{urine} \times Urine flow rate}{[sub]_{plasma}}$$

• We mainly use the following 2 substances:

1) Inulin: polymer of fructose (very precise)

- Easily filtered
- Can't be absorbed nor secreted by the nephron
- Non-endogenous substance

Assume: [inulin] $_{plasma}$ = 0,5 mg/ml; [inulin] $_{urine}$ = 30 mg/ml; urine flow = 2ml/min Find the GFR?

$$GFR = \frac{30 \times 2}{0.5} = 120 \text{ml/min or } 172 \text{ L/day}$$

→ to convert from ml/min to L/day we multiply by 1.44

2) Creatinine: endogenous substance released by skeletal muscles

- Small quantity is secreted in the proximal tubules (less accurate)
- Method used usually detects other substances other than creatinine
- These two errors cancel out making creatinine reasonable to measure it
- Better used in humans ONLY

Assume:

[creatinine] $_{plasma}$ = 1 mg/dl; [creatinine] $_{urine}$ =70 mg/dl; urine flow = 2ml/min

Find the GFR?

$$GFR = \frac{70 \times 2}{1} = 140 \text{ ml/min}$$

Substance used to measure RPF & RBF:

- Main substance used to measure RBF is PAHA
- They are easily filtered, secreted, yet NOT reabsorbed
- Since they are both filtrated and secreted at the same time, they are completely removed by a single renal circulation.
 Therefore, its clearance rate is equal to the RPF.
- We can calculate RPF using the clearance of PAHA
- The clearance we find is the plasma flow, and the blood is composed of plasma and hematocrit

$$C_{PAHA} = RPF = \frac{U \times V}{P}$$

$$RPF = RBF \times (1 - Hct\%)$$

$$RBF = \frac{RPF}{(1 - Hct\%)}$$

D Filtration, secretion

Renal handling of substances

filtered

By comparing the clearance measurement of a substance to that of inulin, we can
determine whether the substance was secreted or reabsorbed.
 Explanation:

C_{substance} > C_{inulin} = substance is secreted

(C x P) + secreted (T) = U x V

Amount
filtered

C_{substance} < C_{inulin} = substance is absorbed

C x P = (U x V) + reabsorbed (T)

Amount

Amount

excreted

T represents an added substance, if UV was higher than CP this means that substance T was removed from the plasma (secreted), and if CP was higher, this means that the substance was returned back to the plasma (absorbed).

Note: If the clearance of both the substance and Inulin are equal, that means it was filtered only.

Renal Threshold:

- Renal threshold is the concentration of a substance dissolved in blood where the kidney begins to remove it into the urine (can't be reabsorbed anymore)
- After this level, filtration > reabsorption = substance gets excreted.

High threshold

- Glucose
- Amino acids

Medium threshold

- Potassium
- Urea

Low threshold

- Phosphate
- Uric acid

No threshold Only filtrated

- Creatinine
- Inulin

Tubular Transport Maximum:

- Tubular transport maximum (T_m): is the maximal amount of a substance (in mg) which can be transported (reabsorbed) by tubules per min.
- In other words, it's the rate of reabsorption at the threshold point.
- Substances with high T_m, such as: glucose & amino acids, are barely excreted by urine.

- The threshold of glucose is 180 mg/dl, at which glucose is maximally transported (T_m).
- For example, if glucose concentration in plasma was 275 mg/dl, ONLY 180 mg/dl will be reabsorbed, and the rest 95 mg/dl will be excreted.
- Note: kidneys don't regulate glucose level, insulin does

Quiz

 A hypertensive patient was admitted to the hospital complaining of a severe headache. His mean ABP was 150 mmHg. The doctor suspected kidney damage. He ordered a renal clearance test. Using the following parameters, calculate the patient's GFR

[substance] $_{\text{urine}}$ =50 mg/dl; [substance] $_{\text{plasma}}$ =0.5mg/dl urine flow = 250 ml in 4 hrs

$$\textit{Urine Flow rate} = \frac{250 \; (ml)}{240 \; (\text{min})} = 1.04 \; ml/min$$

$$GFR = \frac{50 \times 1.04}{0.5} = 104 \, ml/min = normal$$

2) Given the following parameters for a freely filterable substance, find whether the substance is absorbed or secreted and its value:

GFR= 120 ml/min; [X]_{plasma}= 3 mg/ml; [X]_{urine}= 10 mg/ml; urine flow = 2ml/min

$$GFR \times P () U \times V$$

$$120 \times 3 ()10 \times 2$$

substance is reabsorbed

3) A patient was infused with P.A.H.A. to measure renal blood flow. She has urine flow rate of 1 ml/min, a plasma concentration of 1 mg/ml and a urine concentration of 600 mg/ml and a hematocrit level of 45%. What is his RBF?

Clearance for PAHA = RPF =
$$\frac{600 \times 1}{1}$$
 = $600ml/min$

$$RBF = \frac{600}{(1 - 0.45)} = 1091 \, ml/min$$

Thank You

Leaders

Sedra Elsirawani

Abdulrahman Alhawas

Members

Lama Alzamil

Badr Almuhanna

Nouran Arnous

Omar Alghadir

Arwa Alemam

Taibah Alzaid

Ghada Alsadhan

Nouf Alhumaidhi

Leen Almazroa

Abdullah Aldawood

Mohammed Alhuqbani

Leave a constructive message

