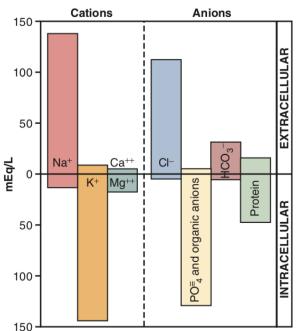
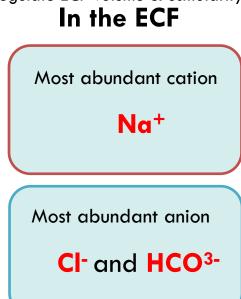


Lecture (7) **Regulation of Fluids**


- Text
- Important
- Extra
- Editing file


MED438

Physiology

Osmolarity

- Maintaining normal ECF volume and osmolarity is crucial
- Normal ECF volume is important in maintaining ABP and tissue perfusion
- Normal ECF volume is controlled by adjusting NaCl content
- Normal ECF osmolarity is important in maintaining cellular volume & function
- Normal ECF osmolarity is controlled by adjusting water content
- Two separate yet interrelated control systems regulate ECF volume & osmolarity.

Why is Na+ Content the Main Determinant of ECF Volume?

- Sodium and its associated anions are the main constituents of the ECF
- When Na⁺ salts move, water must follow

$(1 \text{ Na}^+ \rightarrow (1 \text{ ECF osmolarity} \rightarrow (1 \text{ H}_2\text{O reabsorption} \rightarrow (1 \text{ ECF volume}))$

• This increase in ECF volume will increase MAP which has a harmful consequence on the body, so Na⁺ levels must be regulated

$\Uparrow \mathsf{ECF volume} \rightarrow \Uparrow \mathsf{CO} \rightarrow \Uparrow \mathsf{MAP}$

A rough estimate of ECF osmolality can be obtained by doubling Na⁺ conc.

ECF Osm = Na⁺ Osm x 2.1 = 142 x 2.1 = 298 mOsm \approx 300 mOsm

• In clinical situations glucose (diabetes) & urea (chronic renal disease) concentrations must be taken into account. (more in Guyton p.381)

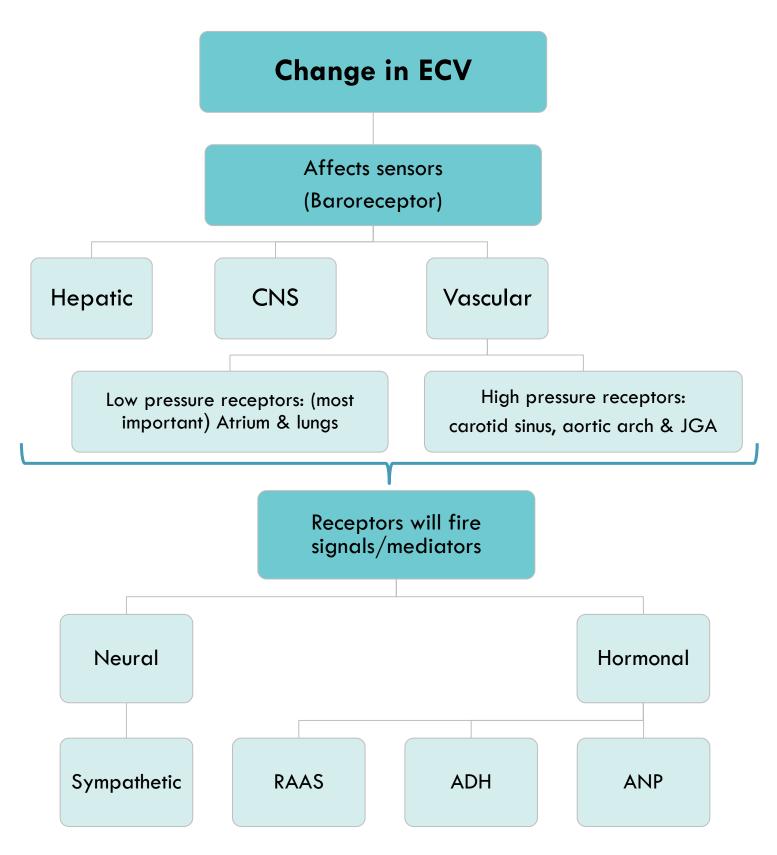
Regulation of Osmolality

- If $\uparrow\uparrow$ water intake \rightarrow hypoosmotic urine
 - **Diluted** \approx 50 mOsm
 - m **Large volume** ≈ up to 18 L/day
- If \Downarrow water intake \rightarrow hyperosmotic urine
 - **Concentrated** \approx 1200 mOsm
- Renal water excretion mechanism is independent of solutes.
- It can allow water to be excreted without damaging solutes homeostasis

Sodium Balance & Regulation

- The body regulates ECF volume by monitoring and adjusting total body content of Na+
- ECF volume is closely linked to Na+ balance.
- Sodium intake is usually 1.5-2.3 g/day (healthy diet)
- Sodium is mainly excreted by the kidney
- GI and sweat are minor sodium excretory pathways

Sodium Distribution in the Body			
Exchangeable		Non-exchangeable	
ECF (65%)	ICF (5-10%)	Bones (25-30%)	


- The signal that triggers sodium excretion is the ECF volume specifically the effective circulating volume (ECV)
- Effective circulating volume is a blood volume that reflects the extent of tissue perfusion is specific region (volume of blood effectively perfusing the tissue)
- Usually any change in ECV changes the ECF

 $\Uparrow \mathsf{ECV} \rightarrow \mathsf{trigger} \ \mathsf{Na^+} \ \mathsf{excretion} \ \rightarrow \Downarrow \ \mathsf{ECF}$

 \Downarrow ECV \rightarrow trigger Na⁺ retention \rightarrow \Uparrow ECF

- Small volume \approx as low as 0.5 L/day

ECV Regulation

Sympathetic Nervous System

- It has a very important role in ECV regulation especially during stressful situation such as hemorrhage
- It has direct/indirect effects on the ECV:
 - 1) Direct:
 - → Afferent & Efferent arteriole constriction (↑ renal vascular resistance)
 - → \Downarrow GFR → \Downarrow Na⁺ filtration
 - \rightarrow 1 Na⁺ reabsorption in PCT
 - 2) Indirect:
 - → Renin release (
 Ang II &
 Aldosterone)
 - \Downarrow ECV \rightarrow Arteriole constriction \rightarrow \Downarrow GFR \rightarrow \Downarrow Na⁺ & water excretion

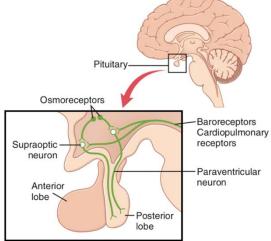
 \uparrow ECV \rightarrow Arteriole dilation \rightarrow \uparrow GFR \rightarrow \uparrow Na⁺ & water excretion

Atrial Natriuretic Peptide (ANP)

- Released from atrial myocytes in response to stretch
- ANP promotes natriuresis (Na⁺ excretion)
- Increase in blood volume will stretch the atrium which will release ANP

It is an antagonist of renin-angiotensin:

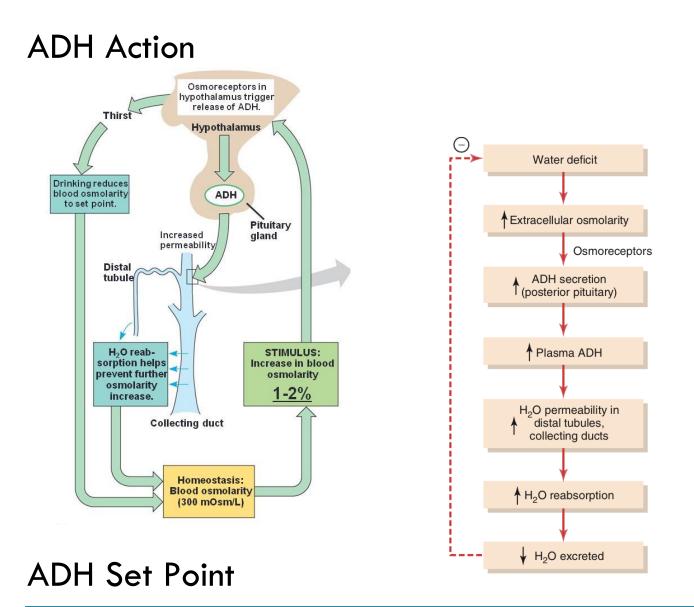
- 1- \Downarrow renin release
- 2- \Downarrow aldosterone release
- 3- \bigcup Na⁺ reabsorption in CD
- 4- ↓ ADH release

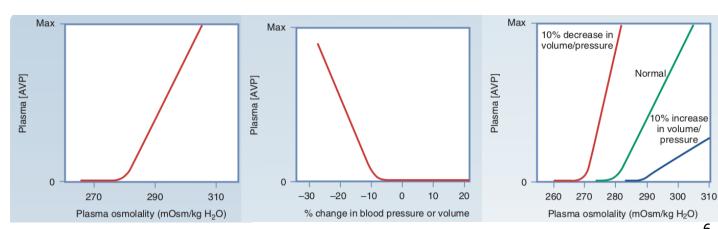

Antidiuretic Hormone (ADH)

- ADH or vasopressin is a small protein hormone that has a fast-acting short half-life action. It has two main functions:
 - 1) Water & urea reabsorption

2) Stimulate thirst centers

ADH is synthesized in the neuroendocrine cells located within the supraoptic and paraventricular nuclei of the **hypothalamus**

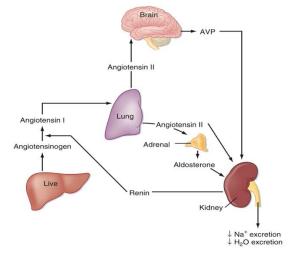

• The hormone is packaged in vesicles and stored in the neurohypophysis or the **posterior pituitary gland**


- ADH release and thirst centers are influenced by the following:
 - 1) Osmolality: 1% increase \rightarrow 1 ADH release
 - 2) Hemodynamic factors: 5-10% decrease in $BP/BV \rightarrow \uparrow ADH$ release
 - 3) Other minor factors

Stimulate ADH	Inhibit ADH
Nausea, hypoxia, <mark>Ang II</mark>	ANP
Drugs: morphine, nicotine	Drugs: alcohol

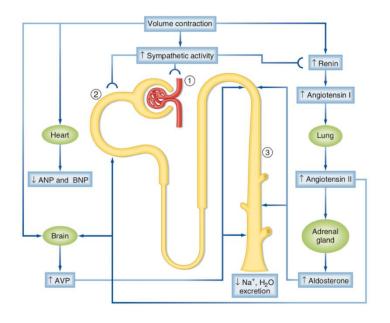
- Thirst is quenched as we drink water by 2 negative feedbacks
 - 1) Moistening of mouth mucosa
 - 2) Stretch of stomach and intestines

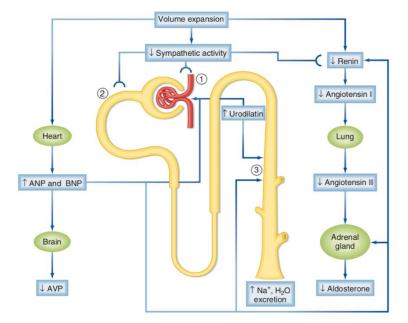
• As we said osmolality and hemodynamic factors (blood volume) are the most important triggers for ADH release, each have a setpoint (were its effect starts)


Osmolality setpoint = 280-285 mOsm BV setpoint = 5-10% decrease

RAAS: Renin-Angiotensin-Aldosterone System

• RAAS system is mainly stimulated by the decrease in ABP (ECF volume)


\Downarrow ABP \rightarrow \Downarrow NaCl delivery to macula densa \rightarrow Release of renin by JG cells


- Renin Secretion is stimulated by:
 - 1) Sympathetic stimulation
 - 2) \Downarrow in perfusion pressure (MAP)
 - 3) \Downarrow NaCl reaching the macula densa
- Angiotensin II is the final product in the RAAS system

- Angiotensin II has 4 main functions:
 - 1) Release aldosterone \rightarrow increase Na⁺ absorption in TAL, DT, and CD \rightarrow the receptor is found in the zona glomerulosa of the adrenal cortex
 - 2) Vasoconstriction $\rightarrow \uparrow \uparrow ABP$
 - 3) ADH release \rightarrow water and urea reabsorption in CD
 - 4) (1) Na⁺ reabsorption in PCT

Summary

	Increase ADH	Decrease ADH
	↑ Plasma osmolarity	\downarrow Plasma osmolarity
	\downarrow Blood volume	↑ Blood volume
	\downarrow Blood pressure	↑ Blood pressure
	Nausea	
	Нурохіа	
	Drugs:	Drugs:
	Morphine	Alcohol
Incre	ease Thirst	Decrease Thirst
↑ Pla	asma osmolarity	\downarrow Plasma osmolarity
↓ Blo	ood volume	↑ Blood volume
↓ Blo	ood pressure	↑ Blood pressure
↑ Ar	ngiotensin II	\downarrow Angiotensin II
Dry mouth		Gastric distention

Quiz

1. Which of the following structures stores ADH?

- A. Neurohypophysis C. Anterior pituitary gland
- B. Hypothalamus D. Supraoptic neural nuclei

2. Which of the following is the MAIN trigger of ADH release?

A. NauseaC. OsmolalityB. HypoxiaD. Blood pressure

3. Which of the following is an action of Angiotensin II?

- A. Decrease water reabsorption C. Afferent constriction
- B. Increase K⁺ reabsorption D. Increase BP

4. Which of the following is an indirect neural effect to regulate ECV?

- A. Release renin C. Increase renal vascular resistance
- B. Decrease Na⁺ reabsorption D. Increase Na⁺ reabsorption
- 5. What is the plasma Osm in a normal person with Na Osm of 135 mOsm?

A. 250 mOsm	C. 290 mOsm
B. 270 mOsm	D. 300 mOsm

Answers: A, C, D, A, B

Thank You

Leaders

Sedra Elsirawani

Abdulrahman Alhawas

Members

Lama Alzamil

Badr Almuhanna

Nouran Arnous

Omar Alghadir

Arwa Alemam

Taibah Alzaid

Ghada Alsadhan

Nouf Alhumaidhi

Leen Almazroa

Abdullah Aldawood

Meshari Alzeer

Mohammed Alhuqbani

Leave a constructive message

