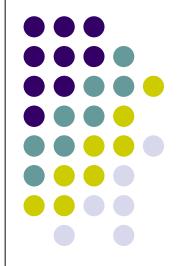
Hemodynamic Disorders, Thrombosis & Shock


• Hemorrhage

- Hemostasis & Thrombosis
- Embolism
- Infarction
- Hyperemia and Congestion
- Shock

Extravasation of blood

due to rupture of blood vessels

Causes:

- Rupture of a large vessel:
 - Trauma
 - Atherosclerosis
 - Inflammatory
 - Neoplastic Erosion
- Rupture of small vessels:
 - hemorrhagic diathesis

Forms: May be: external into a body cavity into a tissue

<u>1) Hematoma:</u>

accumulation of blood enclosed or confined within tissue

e.g.

- Bruise (insignificant)-

- retroperitoneal hematoma

due to ruptured aortic aneurysm

 \rightarrow fatal

2) Petechiae:

minute hemorrhages into skin, mucous membranes, or serosal surfaces (1-2 mm)

• Associated with:

- Local increase hydrostatic pressure
- Thrombocytopenia
- Defective platelets function
- Defective clotting

3) Purpura:

- Slightly larger hemorrhages than petechiae,
- measures (3-5 mm)
- <u>Causes:</u>
 - Causes as petechiae
 - Trauma
 - Vasculitis
 - Increased vascular fragility

4) Ecchymoses:

- Subcutaneous hematoma 'bruise' over 1-2 cm
- Q: Why do **bruises change color** as they Resolve?
- The RBC's in a hemorrhage are broken down:
 - hemoglobin (red) \rightarrow
 - bilirubin (blue-green) \rightarrow
 - hemosiderin (golden-brown)

Accumulation of blood in a body cavity:

- Hemothorax
- Hemopericardium
- Hemoperitoneum
- Hemarthrosis

Clinical Effects of Hemorrhage

- < 20% blood loss, in otherwise healthy individuals →
 little health effect
 - That's why donating blood is OK

• \geq 20% blood loss \rightarrow Hemorrhagic Shock

Clinical Effects of Hemorrhage

• <u>Patient Condition:</u>

• But in patients who have **heart or lung disease** \rightarrow

even mild blood loss could decrease critical oxygen carrying capacity \rightarrow 'heart attack'

• <u>Site</u> \rightarrow Bleeding into the brainstem is fatal while same blood loss from a finger cut is trivial

- <u>Chronic</u> recurrent bleeding
 - (e.g. peptic ulcer, menstrual bleeding) → can lead to
 iron deficiency anemia!

- Anemia from Blood Loss:
 - This may be the only hint of Occult Cancer
 - Carcinoma of the Colon
 - Gastric Carcinoma (less common)

Hemodynamic Disorders, Thrombosis & Shock

- Hemorrhage
- Hemostasis & Thrombosis
- Embolism
- Infarction
- Edema
- Hyperemia and Congestion
- Shock

Increased blood in an area

(inside blood vessels)

compared to normal

Compare between: "Hyperemia & Congestion"

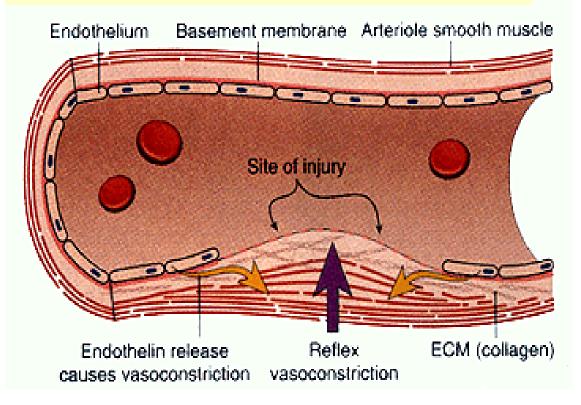
- is an "active process"
- resulting from augmented tissue inflow
- due to arteriolar dilation
- (e.g. acute inflammation)

Congestion

- is a "passive process"
- resulting from impaired outflows from a tissue
- Impaired venous return
- (e.g. cardiac failure or venous obstruction)

Hemodynamic Disorders, Thrombosis & Shock

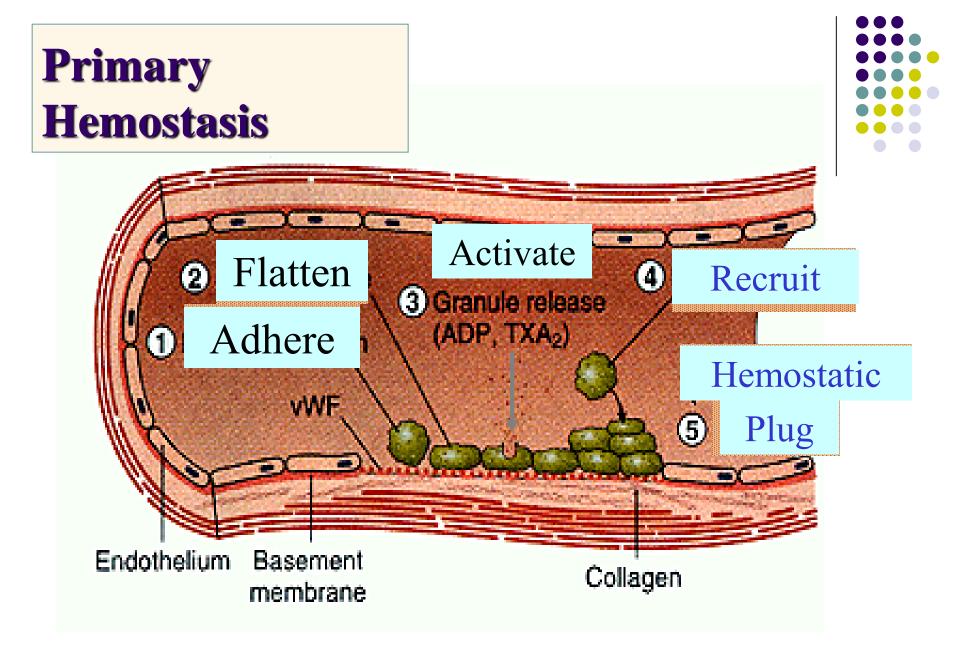
- Hemorrhage
- Hemostasis & Thrombosis
- Embolism
- Infarction
- Hyperemia and Congestion
- Shock


Hemostasis

after initial injury (e.g. a small cut) → there is a brief period of arteriolar vasoconstriction (neurogenic reflex mediated by endothelin)

A transient effect

Vasoconstriction



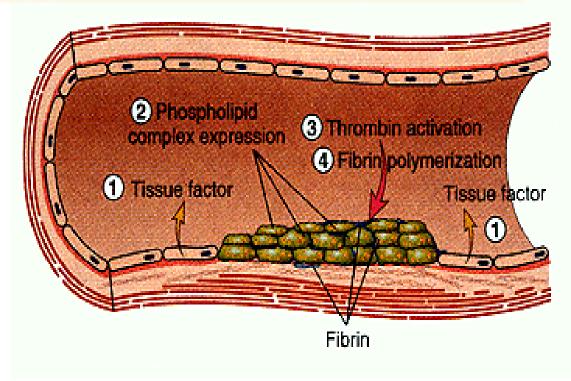
• Endothelial injury exposes the blood to the

extracellular matrix (ECM)

- The ECM is highly thrombogenic
- Platelets adhere, flatten and then activate
- To form hemostatic plug (primary hemostasis)

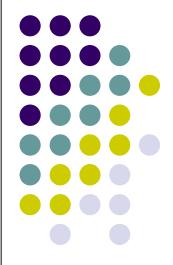
vWF = von Willebrand Factor

Secondary Hemostasis



• tissue factor together from endothelial cells & platelet factors activate the *coagulation cascade with fibrin*

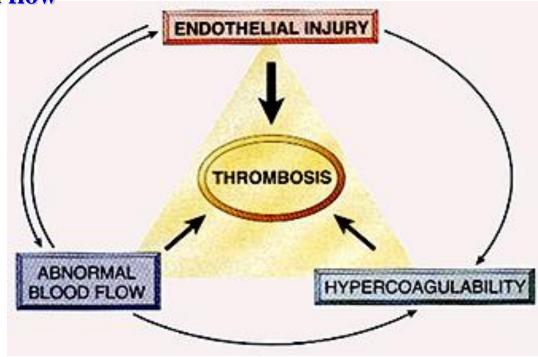
deposition


- Thrombin activation induces further platelet recruitment and granule release (secondary hemostasis)
- polymerized fibrin and platelets aggregate to form permanent plug

Secondary Hemostasis

Thrombosis

- The formation of a blood clot (thrombus) within the non-interrupted vascular system
- due to inappropriate activation of normal hemostatic processes


Thrombosis

Pathogenesis:

Predisposing Factors:

Virchow's Triad:

- 1. endothelial injury
- 2. stasis or turbulence of blood flow
- 3. blood hypercoagulability

1) Endothelial Injury

- Important for thrombus formation in the heart and arterial circulation \rightarrow

Causes:

- **1.** Endocardial injury (myocardial infarction, valvulitis)
- 2. Severe Atherosclerosis
- 3. Hypertension
- 4. Bacterial endotoxins
- 5. Hyperchlosteremia, homocystinuria, radiation
- 6. Toxic Products (Cigarettes)

2) Abnormal Blood Flow

Causes:

- Predisposing conditions in Arteries and the Heart:
 - 1. Atherosclerosis
 - 2. Aneurysms
 - 3. Myocardial Infarction
 - 4. Heart Valves abnormalities
 - 5. Heart chambers dilation
 - 6. Atrial dilatation & fibrillation
 - 7. Hyperviscosity Syndromes e.g. (Sickle cell anemia, Polycythemia)

2) Abnormal Blood Flow

<u>Turbulence & Stasis → Thrombosis</u> <u>HOW???</u>

- Disrupt normal laminar flow and bring platelets in contact with endothelium
- 2. Prevent dilution of **activated clotting factors**
- 3. Retard the inflow of **clotting factor inhibitors** → Permit thrombi build-up
- 4. Promote **endothelial cell activation**

- Any alterations of the coagulation pathways that predispose to thrombosis:
 - Primary (genetic)

or

• Secondary (acquired) disorders

3) Hypercoagulability:

Primary - Genetic

A) Mutation of Factor V Gene

Factor V mutation "Leiden Mutation":

B) Mutation of Prothrombin gene

C) Inherited Lack of Other Anticoagulants

3) Hypercoagulability: Secondary - Acquired

1. Cardiac failure:

• multifactorial

2. Oral Contraceptives & Hyperestrogenic state of pregnancy:

• (due to increased hepatic synthesis of coagulation factors & reduced synthesis of antithrombin III)

3. Disseminated cancer:

• (due to procoagulant tumour products)

4. Advancing age:

• (due to increase platelet aggregation & reduced PGI2 by endothelium)

5. Smoking & Obesity

Morphology of Thrombi

• Thrombi Develop INSIDE THE CARDIOVASCULAR SYSTEM

• {BUT, bleeding into the peritoneal area, for example, forms: a blood clot - NOT a thrombus}

Morphology of Thrombi

- Lines of Zahn
 - Alternating pale layers of platelets & fibrin with darker layers of RBC's
 - Imply formation in areas of **active blood flow** such as in the heart, aorta or larger arteries

• Venous thrombi form in a more sluggish flow zone and often lack lines of zahn

Clinical Correlations:

Venous Thrombosis

1) Superficial Veins of the Lower Extremities

- Cause pain, swelling
- rarely embolize
- Associated with varicosities
 - Varicose veins abnormally dilated, tortuous veins
- Increased risk of infections
- Increased risk of varicose ulcers

Clinical Correlations:

Venous Thrombosis

2) Thrombi in Deep Veins

- (Popliteal, femoral, iliac veins)
- more likely to embolize ----
- May produce edema, pain and tenderness
- About 50% are asymptomatic (due to formation of collaterals)

Clinical Correlations:

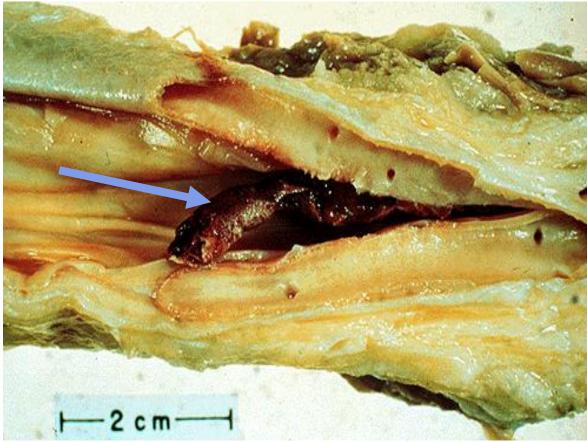
Venous Thrombosis

2) Thrombi in Deep Veins --- Predisposing Factors:

- Cardiac Failure (CHF)
- Reduced physical activity:
 - Trauma
 - Surgery
 - Burns
 - Bed rest and immobilization
- 3rd term Pregnancy & Postpartum
- Disseminated cancers:
 - Migratory Thrombophlebitis (Trousseau's Syndrome)

Clinical Correlation

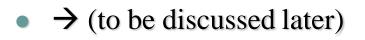
- Thrombi are significant because:
 - 1. They cause **Obstruction**
 - 2. They **Embolize**



- 1. Propagation and obstruction
- 2. Embolization
- 3. Dissolution "nothing left"
- 4. Organization and recanalization

1) **Propagation**

- Thrombus accumulate more platelets and fibrin \rightarrow gets larger
- Leading to obstruction



• Fragmentation and dislodge of a thrombus

transported by the blood in the vasculture to a site

distant from its point of origin

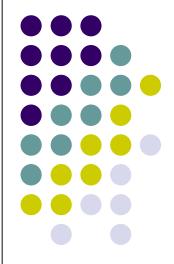
3) Dissolution of Thrombi

- Activation of fibrinolytic system
- Recent thrombi can undergo total lysis
- Older thrombi won't undergo lysis (due to extensive fibrin polymerization)
 - Thus the use of t-PA(tissue plasminogen activator) is only

effective in the first 1-3 hours

4) Organization / Recanalization

- Granulation tissue followed by:
 - Capillary channel formation → re-establishing the flow
 "recanalization"
 - May *heal* so totally as to leave only a small fibrous
 'lump' as evidence of a previous thrombus


Hemodynamic Disorders, Thrombosis & Shock

- Hemorrhage
- Hemostasis & Thrombosis
- Embolism
- Infarction
- Hyperemia and Congestion
- Shock

Embolism

<u>An embolus is:</u>

a detached *intravascular* solid, liquid or gaseous mass that is **carried by the blood** to a site distant from its point of origin

Embolism

Source:

- 99% are dislodged thrombus:
 - thromboembolism
- Rarely:
 - fat, air, atherosclerotic debris, tumor fragments, bone marrow, foreign bodies (bullets)

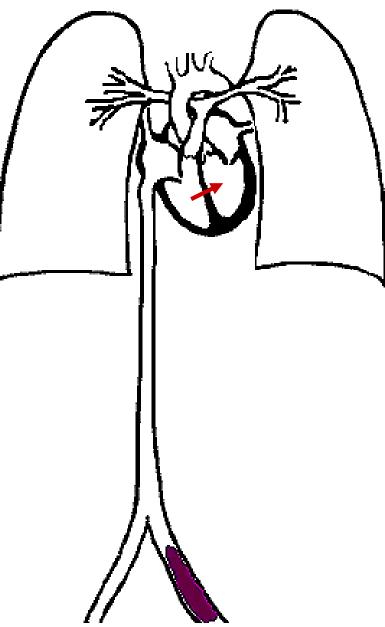
Potential consequence:

• ischemic necrosis (infarction)

Embolism

• <u>Potential Consequences:</u>

Ischemic necrosis (infarction)


1. Though **pulmonary emboli are common** and important,

- secondary pulmonary infarction is not common
- Lung is protected by a dual blood supply
- The brain is not so protected and gets infarcts (stroke)
 LIQUEFACTIVE NECROSIS

Pulmonary Thromboembolism

- Generally originate from
 deep leg veins (in 95%)
- Usually pass through the right heart into **pulmonary vasculature**
- What is "paradoxical embolism"??
 - an embolus from deep veins →
 pass through an interarterial or

 interventricular defect → to gain access
 to the systemic circulation

May occlude:

- main pulmonary artery, across the bifurcation (saddle embolus)
- or pass into the **smaller**, branching arterioles
- **multiple** emboli may occur

Pulmonary Thromboembolism

<u>Clinical Effects:</u>

- 1. Small size emboli (in 60-80% of cases) → *Clinically Silent*
- 2. If obstruct > 60% pulmonary circulation → Sudden Death / OR Right heart failure (core pulmonale)
- 3. Emboli in medium-sized arteries may result in → hemorrhage without infarction
- 4. if bronchial circulation is **compromised** (as in left heart failure) \rightarrow infarction
- 5. Multiple $PE \rightarrow$ pulmonary hypertension & right heart failure
- 6. Initial PE increases the risk for \rightarrow more PE!

"Emboli traveling within the arterial circulation"

• 80% arise from **intracardiac mural thrombi**

Systemic Thromboembolism

Causes:

- Thrombi formed on:
 - Myocardial infarction left ventricle
 - Dilated left atrium due to mitral valve abnormalities
 - Atherosclerosis Aorta
 - Aortic aneurysm
 - Valvular vegetations (thrombi)
 - Paradoxical thrombus (uncommon)

Systemic Thromboembolism

• <u>Effects:</u>

- Emboli traveling within the arterial circulation to a wide variety of <u>sites</u>:
 - Lower extremities (75%)
 - Brain (10%)
 - Intestine, spleen, kidney (less frequent)

> Lead to **infarction** in the distribution of obstructed vessel

Microscopic **fat** globules in the circulation

derived from:

- long bone fractures (fatty marrow)
- or soft tissue trauma and burns (rarely)

< 10% of cases show clinical findings: →
 fat embolism syndrome

Fat Embolism Syndrome:

• Characterized by:

- 1. Pulmonary insufficiency
- 2. Neurologic symptoms
- 3. Anemia
- 4. Thrombocytopenia

• Only 10% of these cases are fatal

<u>Gas bubbles</u> within the circulation can obstruct vascular flow to cause distal ischemic injury

• <u>Causes:</u>

- 1. Obstetric procedures
- 2. Chest wall injury
- 3. Sudden atmospheric pressure changes (decompression sickness \rightarrow e.g. divers)
- <u>Effects:</u> (> 100 mL of air)

Amniotic Fluid Embolism

Infusion of amniotic fluid into maternal venous circulation

Causes:

- 1. Torn placental membrane amniotic fluid release
- 2. Rupture of uterine veins
- Mortality of 80%

Disseminated Intravascular Coagulation (DIC)

- Sudden widespread fibrin deposition in microcirculation
- Rapid consumption of platelets and coagulation proteins *(consumption coagulopathy)*
- Secondary massive fibrinolysis, all the little thrombi dissolve
- Clotting disorder turns into a **Bleeding Disaster**

Hemodynamic Disorders, Thrombosis & Shock

- Hemorrhage
- Hemostasis & Thrombosis
- Embolism
- Infarction
- Hyperemia and Congestion
- Shock

Infarction

An area of ischemic necrosis caused by occlusion of either the arterial supply or the venous drainage in a particular tissue

Infarction

• Causes:

1. Arterial occlusion due to **thrombotic or embolic** events (99%)

2. Other arterial causes:

- Vasospasm
- Swelling of atheroma
- Extrinsic compression on vessel (by tumor ...)
- Twisting of vessels
- Traumatic rupture

3. Venous thrombosis:

in organs with single venous outflow e.g. testis, ovary

Infarction

Morphology:

- (arterial occlusion, solid organs) White infarcts: -
- Red infarcts: -

- (venous occlusion, loose tissue,
- dual circulation, congested tissue,
- reperfusion)

Factors that influence Development of an infarct

- Nature of the vascular supply (dual arterial supply)
- Rate of development of occlusion
- Vulnerability of the tissue to hypoxia
- Oxygen content of blood

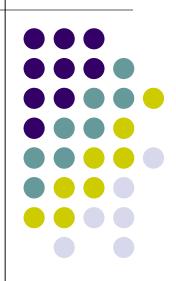
Hemodynamic Disorders, Thrombosis & Shock

- Hemorrhage
- Hemostasis & Thrombosis
- Embolism
- Infarction
- Edema
- Hyperemia and Congestion
- Shock

Shock

Systemic hypoperfusion due to reduction either in:

cardiac output


• or in the **effective circulating blood volume**

results are:

Hypotension, followed by

Impaired Tissue Perfusion and

Cellular Hypoxia

- Shock or "cardiovascular collapse" is the final common path for a diverse group of lethal events:
- Three Main Categories:
 - 1. Cardiogenic
 - 2. Hypovolemic
 - 3. Septic
- Others:
 - 4. Neurogenic Shock (spinal cord injury)
 - 5. Anaphylactic Shock

1) Cardiogenic Shock

Results from Severe Myocardial Pump Failure

Due to:

- Myocardial Infarction
- Ventricular Arrhythmia
- Extrinsic Compression (Cardiac Tamponade)
- Outflow Obstruction (Pulmonary Embolism)

Results from Loss of Blood or Plasma Volume:

- Hemorrhage
- Fluid loss from severe burns or trauma

- Caused by systemic microbial infection
- Dissemination of infection into the vasculature
- Most often caused by *"endotoxin-producing* gram-negative" infection (endotoxic shock)
- But can also occur with gram-positive and fungal infections
- Most common cause of death in ICU's in the US