3 – Anemia and polycythemia

"قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم"

صدق الله العظيم

Objectives;

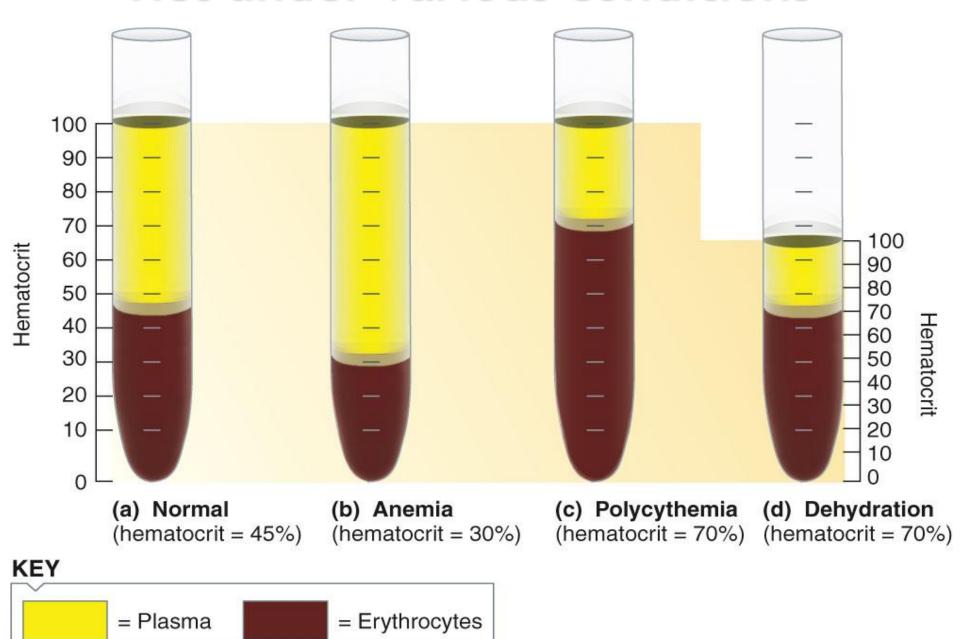
Intended learning outcomes (ILOs)

After reviewing the PowerPoint presentation and the associated learning resources, the student should be able to:

- Define anemia
- Classify anemia and explain its assessment
- Describe the physiological consequences and clinical picture of anemia
- Recognize the different types and causes of anemia
- **■** Know how to differentiate between the different types and causes of anemia
- **■** Know the blood indices, their normal values and how to calculate them
- Define polycythemia
- Classify polycythemia
- Describe the physiological consequences of polycythemia

Anemia and Polycythemia

Anemia is decrease in RBC mass as determined by Hct or Hb values below reference level.


The major causes of anaemia are:

- 1. Decreased RBC production
- 2. Increased RBC destruction
- 3. RBC Loss without RBC destruction

Polycythaemia is increase in RBC mass as determined by Hct or Hb values above reference level for age and gender

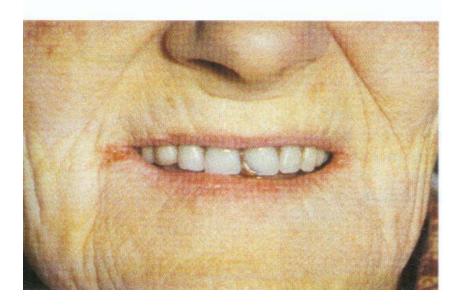
Hct under various conditions

Clinical Picture of Anemia

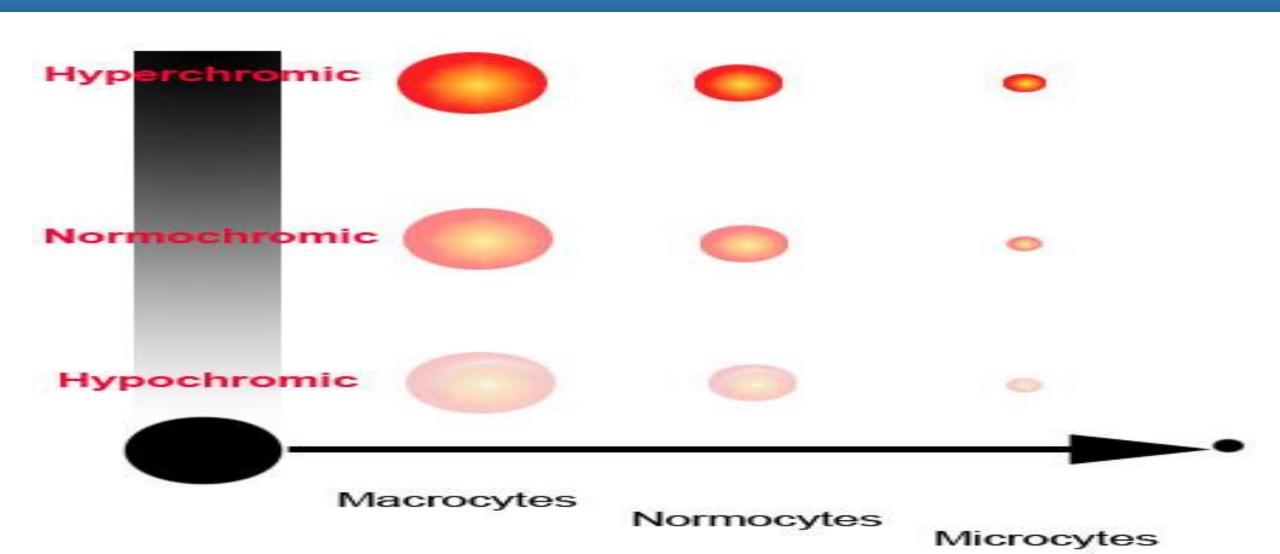

Symptoms

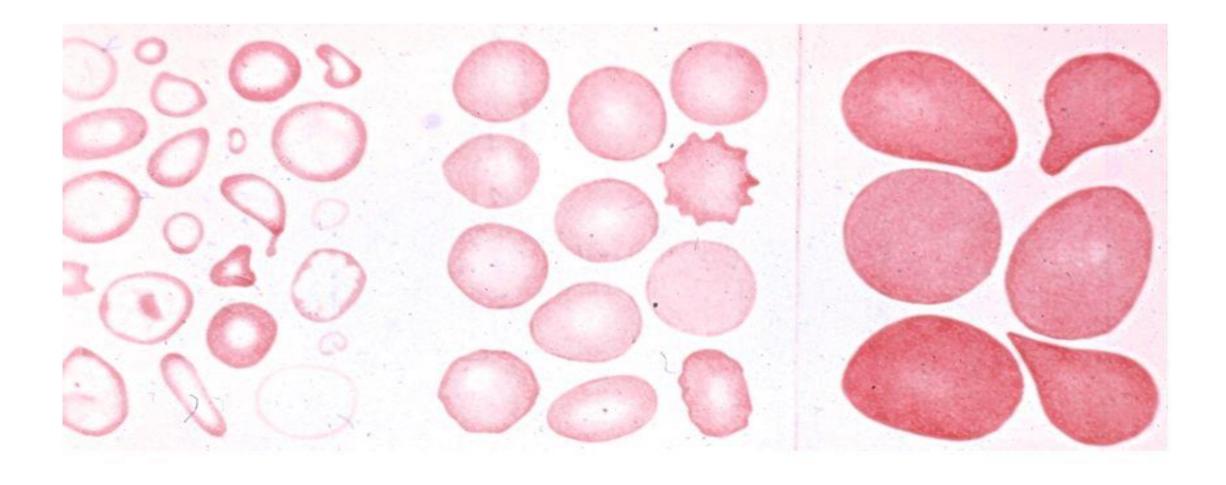
- fatigue, cold intolerance, pallor, tachycardia and tachypnea.
 - oxygen-carrying capacity of blood is reduced
 - lack of O₂ for ATP and heat production

Signs


- Pallor: an abnormal loss of skin or mucous membrane color.
- **☐** Koilonychia: is when the nail curves upwards (becomes spoon-shaped)
- Angular stomatitis: deep cracks and splits form at the corners of the mouth
- ☐ Tachycardia and tachypnea: due to compensatory sympathetic stimulation.

Clinical Picture of Anemia





Causes of anemia

RBC loss without RBC Destruction	Decreased RBC Production	Increased RBC Destruction over Production (Hemolytic Anemias)
 Hemorrhage Due to trauma Due to disorders: e.g.cancer, ulcers Menstrual flow 	Iron Deficiency anemia -Folic acid or vitamin B12 deficiency. - Aplastic anemia	- Intrinsic Abnormalities Hereditary Spherocytosis Thalassemia Sickle Cell Anemia G6PD deficiency
 Gynecological disorders Peptic ulcer Parasitism Hookworms 	-Renal disease (lack of erythropoietin production)	 Extrinsic Abnormalities Infections Malaria Mycoplasma

Types of anemia

Normocytic normochromic

Other causes
Aplastic
Hemolytic
Acute hge

- MCV
- MCH

Microcytic hypochromic

Iron deficiency anemia

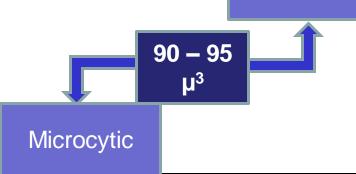
> MCV MCH

Macrocytic hyperchromic

Folate or vitamin B₁₂ deficiency

> MCV MCHC

Haematological indices

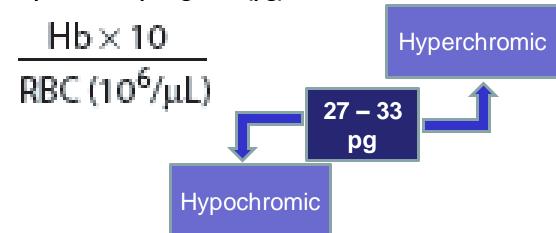

Mean corpuscular volume (MCV): The average volume of the red blood cells expressed in femtoliters (fl) or cubic micrometers. Hct \times 10

 $= \frac{HCt \times 10}{RBC (10^6/\mu L)}$

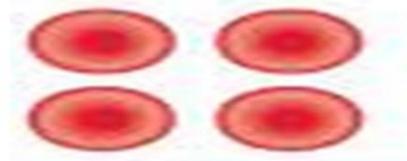
Macrocytic

Normal value: 90-95 femtoliters (10⁻¹⁵ liters) abbreviated fl.

- ☐ Macrocytic anemias—larger than normal cells
- ☐ Normocytic anemias cells are normal in volume.
- ☐ Microcytic anemias—cells are smaller than normal.



Mean corpuscular Hb (MCH):


The average amount of hemoglobin inside a RBC expressed in picograms (pg).

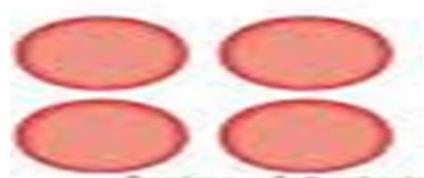
Normal value: 27-33 pg (10⁻¹² gram)

- Normochromic
- ☐ Hypochromic
- ☐ Hyperchromic

NORMOCYTIC NORMOCHROMIC ANEMIA

 $MCV = 90 \mu^{3}$

MCH = 30 pg


MICROCYTIC HYPOCHROMIC ANEMIA WITH ANISOCYTOSIS AND POIKILOCYTOSIS

 $MCV = 70 \mu^{3}$

MCH = 22 pg

MACROCYTIC HYPERCHROMIC ANEMIA

 $MCV = 110 \mu^{3}$

MCH = 38 pg

Activate Windows
Go to Settings to activate Windows.

Haematological indices

Mean corpuscular Hb concentration (MCHC):

The average concentration of hemoglobin in the RBCs expressed as (gm/dl).

- Normal value: 32- 35 g/dl of RBCs
$$=$$
 $\frac{\text{Hb} \times 100}{\text{Hct}}$

Indices		Males	Females
Hematocrit (Hct) (%)		47	42
Red blood cells (RBC) (10 ⁶ /L)		5.4	4.8
Hemoglobin (Hb) (g/dL); dL = 100 milliliters		16	14
Mean corpuscular volume (MCV) (<u>fL</u>) ^a	$= \frac{\text{Hct} \times 10}{\text{RBC} (10^6/\mu\text{L})}$	90 - 95	90 - 95
Mean corpuscular hemoglobin (MCH) (pg)	$= \frac{\text{Hb} \times 10}{\text{RBC (10}^6/\mu\text{L)}}$	29	29
Mean corpuscular hemoglobin concentration (MCHC) (g/dL of cells) ^b	= \frac{\text{Hb} \times 100}{\text{Hct}}	34	34

^a Cells with MCVs > 95 fL are called macrocytes; cells with MCVs < 80 fL are called microcytes.

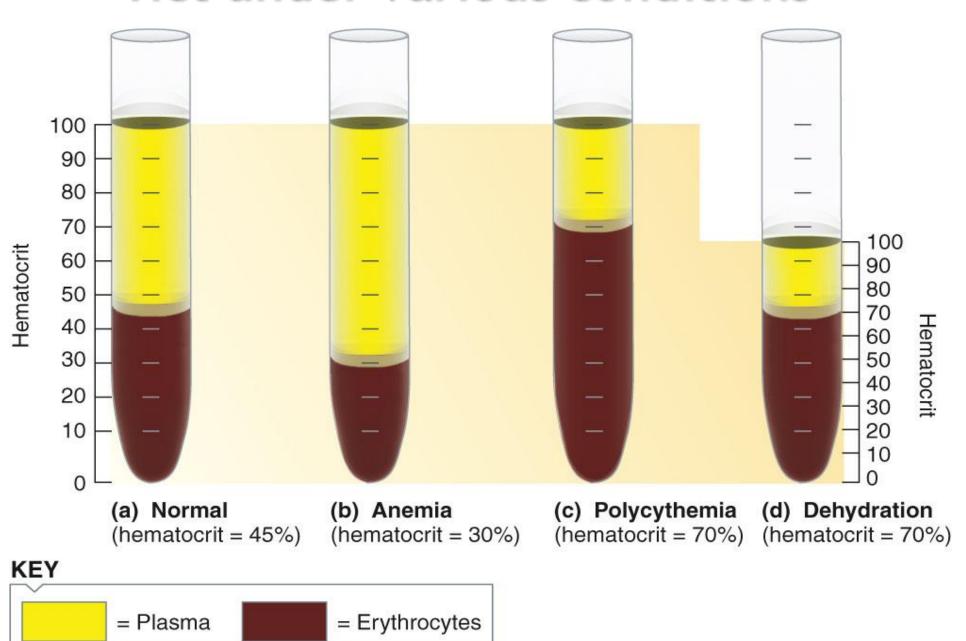
^b Cells with MCHs < 25 g/dL are called hypochromic.

Type of Anemia	Hb content	RBCs count	PCV (HCT value)	MCV	MCH
Microcytic hypochromic					
Normocytic Normochromic				Normal	Normal
Macrocytic hyperchromic					

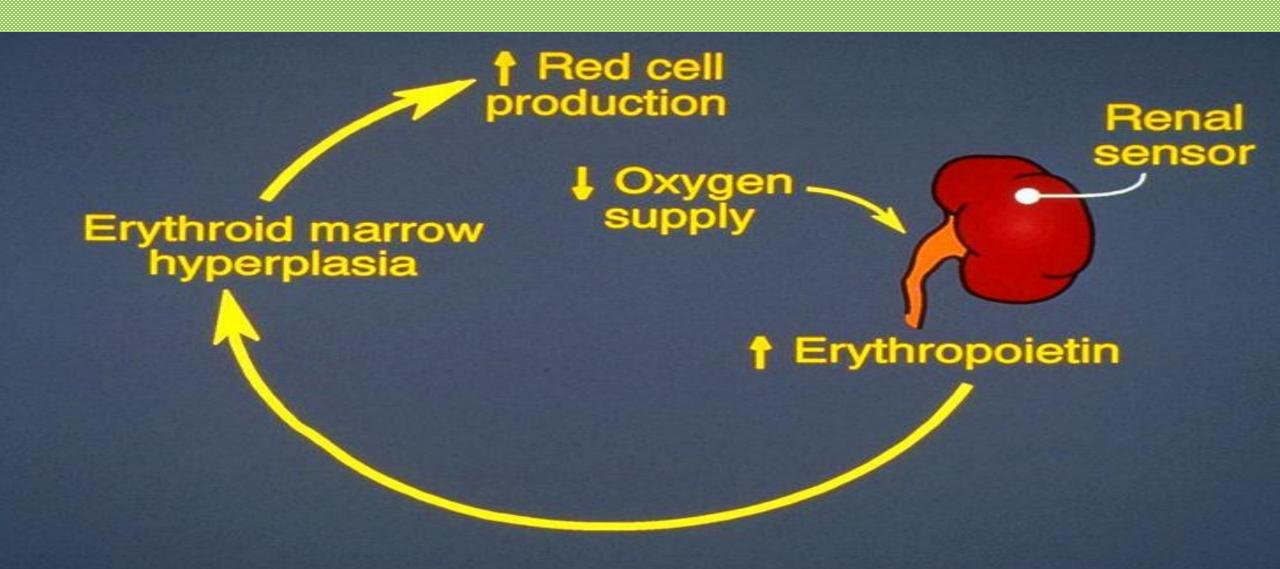
How to differentiate between aplastic and hemolytic anemias?

Basic Evaluation of Anemia

- ☐ Review of blood count, blood smear and RBC indices (MCV, MCH, MCHC)
- MCV is the most accurate method of measuring red blood cells and most useful in classification of anaemia as microcytic, normocytic or macrocytic.
- ☐ Reticulocyte index
- = reticulocyte count (%) x [observed haematocrit / normal haematocrit] *ie* normalized for hematocrit
 - □ Reticulocyte index > 2% indicates excessive RBC destruction or loss (Hemolytic anemia)
 - □ Reticulocyte index < 2% indicates decreased production (Aplastic anemia)


Polycythemia

Types:


- ☐True or absolute
 - Primary (polycythemia rubra vera):
 uncontrolled RBC production (cancer of the bone marrow)
 - Secondary to hypoxia: high altitude, chronic respiratory or cardiac disease
- **□**Relative
 - Hemoconcentration:
 - » loss of body fluid in vomiting, diarrhea, sweating

Complications of polycythemia: hyperviscosity of the blood

Hct under various conditions

Pathophysiology of Polycythamia

Thank You