

Practical Blood groups, clotting and bleeding time

Team Leaders: Haya Alenazi Abdulrahman Alswat

Red: Important Black: In Male & Female slides Blue: In male slides Pink: In female slides Green: Notes & extra information

- At the end of this lab you should be able to:
- Understand and practice the method used in determining blood groups (ABO and Rhesus(Rh) systems).
- Determine your own Bleeding and clotting time.
- Recognize the importance of bleeding time and clotting time in haemostasis.

Aim of the practical

<u>To determine:</u>

- Blood groups
- Clotting time
- Bleeding time

Antigen is what makes each blood group differ from each other ?

The presence of substances called. Antigens are like the cells identification tag . Antigens are located on the cell's membrane

A blood group: has <u>A antigen</u> on the cell membrane of RBCs and <u>anti - B antibody</u> in plasma

40% of people has blood group A

B blood group: has <u>B antigen</u> on the cell membrane of RBCs and <u>anti - A antibody</u> in plasma .

11% of people has Blood group B

AB blood group: has <u>both A and B antigen</u> on the cell membrane of RBCs and <u>NO antibodies</u> in plasma .

4% of people has blood group AB

O blood group: has <u>NO antigen</u> on the cell membrane of RBCs and <u>anti A and anti B antibodies</u> in plasma

45% of people has blood group O

Blood Groups

Blood type	Antigens on blood cells	Anibodies made by the immune system	Can donate blood to	Can receive blood from
0-	None	Anti-A, Anti-B, Anti-Rh	All blood types	O- only
0+	Rh	Anti-A, Anti-B	Any Rh+ blood types	0- or 0+
A-	Α	Anti-B, Anti-Rh	Any A or AB	O or A-
A+	A, Rh	Anti-B	A+ or AB+	Any O or A
B-	В	Anti-A, Anti-Rh	Any B or AB	B- or O-
B+	B, Rh	Anti-A	B+ or AB	Any O or B
AB-	А, В	Anti-Rh	Any AB	Any Rh-
AB+	A, B, Rh	None	AB+	All blood types

Blood groups Antigens

Procedure:

- 1. Prick a finger and place one drop of blood in each of the compartments A,B and D (these are clearly labeled on the microscope slides provided)
- 2. Quickly add a drop of anti-A , anti-B and anti-D sera to each compartment
- 3. Mix the serum with the drop of blood by moving the slides gently for a min or two , then examine the mixtures for signs of RBC agglutination or clump formation

<u>Materials</u>

- A grease Pencil.
- High titer anti-A ,anti-B and anti-D sera.
- Microscope slides.
- Alcohol swab and pricker.

Blood being tested

Serum

Type A (contains agglutinogen A)

Type O (contains no agglutinogens)

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Hemolytic disease of the Newborn

If a child is Rh positive

Fetal Rh positive RBC escape into mother circulation system

In the second pregnancy with a fetus having Rh or d positive results in destruction of fetal D positive RBC that enter into the mother blood circulation

Mother produce antibodies to Rh or D antigen

Interruption of slide typing

- If we have A blood group on a slide and we add anti A antibody it will coagulate
- If we have a B blood group on a slide and we add anti B antibody it will coagulate
- If we have AB blood group on a slide and we add anti A or anti B antibodies it will coagulate in both cases
- If we have O blood group on a slide it will not coagulate with any of the ant A or anti B antibodies
- If we add anti rhesus Rh to a blood group and it coagulate then the blood group has Rh or D antigen if it didn't coagulate then there is no D antigen hence it is Rh negative

Clotting Time

- The time required for blood to form a clot.
- Gives a rough measure of all intrinsic clotting factors in the absence of tissue factors.
- Normal coagulation time in glass tubes: 3-10 min , 5–15 min
- Used in diagnosing hemophilia
- Chief application: monitoring anticoagulant therapy. (Heparin, Warfarin)

<u>Materials</u>

- Capillary tubes of uniform size (non heparinized)
- A petri-dish
- Alcohol swabs
- Cotton wool
- Plasticine
- A water bath set at 37°

Procedure:

- 1. Clean finger with alcohol swap, prick it with lancet and note the time that the prick is made.
- 2. Wipe away the first drop of blood. Then while the blood is still flowing freely place one end of a capillary tube in the blood. Holding the tube horizontally let it fill by capillary action, fill more than one tube.
- 3. Close the end of the capillary tube with plasticine. Place the tube in the water bath.

4. Two minutes after making the puncture, break a . capillary tube and separate the two halves .

- slowly.
- 5. Repeat the procedure at 30 second intervals with the remaining tubes.
- 6. When the blood forms a continuous thread-like .
- clot between the broken ends of the tube, the . .
- end-point has been reached, note the time.
- 7. The time from pricking the finger to the appearance of the clot is the clotting time

Clotting Time

Result:

- Usually the clotting time measured by this method is in the range 5-15 min , 3-6 min
- Prolong clotting time seen in deficiencies in the intrinsic coagulation pathway.
- Example: hemophilia due to deficiency of Factor VIII (8).

- Coagulation: also known as clotting, is the process by which blood changes from a liquid to a gel, forming a blood clot. It results in the cessation of blood loss, therefore maintains homeostasis.
- Hemophilia: a rare disorder in which your blood doesn't clot normally because it lacks sufficient blood-clotting proteins (intrinsic clotting factors).

Fibrin

Alternative method

Clotting Time using Test Tube method

Procedure:

- Place 2 ml blood into non heparinized test tube incubated in water bath.
- Time from pricking finger to clot formation is clotting time.
- Every 30 second invert gently to check for clot formation.
- Normally 6-10 min by this method.
- Measurement of the clotting factors are better used.

Bleeding Time

- The time taking for bleeding to stop (time for a platelet plug to form).
- Bleeding time is a test of platelet function.
- The template bleeding time is used when the test is performed by standard template method.

Procedure:

- 1. Clean the lobe of the ear with an alcohol swab.
- 2. When it is dry, make a single puncture with a stylette (about 3mm deep).
- 3. Note the time at which the puncture is made.
- 4. The skin of the ear should not be touched once the puncture has been made until the experiment is over.
- 5. Apply a piece of filter paper to the blood-drop every 30 seconds until the bleeding stops.
- 6. The bleeding time estimated by this method of a normal subject is within 2-5 minutes.

Bleeding Time

The Standardized Template Method

- 1. A sphygmomanometer cuff is applied to the subject's arm and inflated to 40 mmHg.
- 2. The volar surface is cleaned with 70% alcohol.
- 3. A sterile metal template with a linear slit (11mm long) is pressed firmly against the skin.
- 4. A scalpel blade, with a guard, is carefully introduced so that it protrudes 1mm through the template slit. An incision, 1mm deep and 9mm long can then be made.
- 5. Blood is gently, but completely removed with filter paper at 15 second intervals until the bleeding stops.
- 6. Normal bleeding times determined with this method are in the range 2.5-9.5 minutes.

Bleeding Time

Note:

- If the bleeding time exceeds
 15 minutes:
- Stop the procedure.
- Apply pressure to stop the bleeding.
- Report as greater than 15 min.

Clinical applications

Bleeding time is prolonged in these conditions:

- Platelet dysfunction
- Thrombocytopenia
- Vitamin K deficiency
- -• Medications: aspirin
 - Von Willebrand disease

- <u>Useful videos</u>
- Laboratory File

Good luck!

Thank You

Team members:

- ماجد العسكر \triangleright
- مشعل الثنيان \triangleright عبد العزيز الربيعة \triangleright
- باسل فقيها \triangleright
- محمد بيارى \triangleright
- محمد السلمان ⊳
- عبد الرحمن الدويش \triangleright
- مرشد الحربى \triangleright
 - منيب الخطيب
- نايف الشهري ⊳ فيصل العمرى ⊳
- عبد العزيز الغليقة \triangleright
- عبد العزيز السحيم ⊳

	340
⊳	سمو الزير
⊳	نورة الشثري
⊳	سارة القحطاني
⊳	ريناد الحميدي
⊳	ياسمين القرني
⊳	يارا الزهراني
⊳	لمي الأحمدي
⊳	آلاء السلمي
⊳	سارة العيدروس
⊳	بدور المبارك
Þ	فرح البكر
⊳	سارة العبيد

حصة العليان

شذى الظعر

 \triangleright

⊳

سارة العبيد

Contact info:physiology439@gmail.com

