

Glycolysis

11

Color index : Main text IMPORTANT Extra Info Drs Notes

Foundation Block - Biochemistry Team

Objectives:

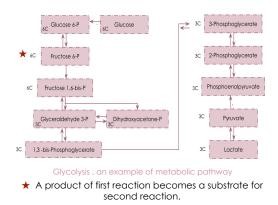
Recognize glycolysis as the major oxidative pathway of glucose.

List the main reactions of glycolytic pathway.

Discuss the rate-limiting enzymes/Regulation.

Assess the ATP production (aerobic/anaerobic).

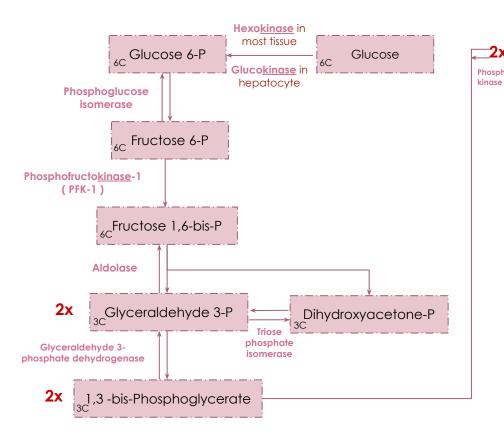
Define pyruvate kinase deficiency hemolytic anemia.

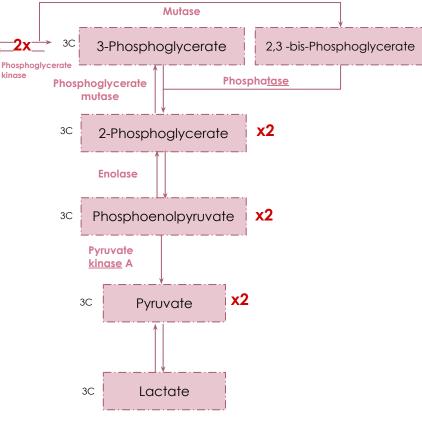

Discuss the unique nature of glycolysis in RBCs.

Glycolysis

- Glycolysis means breaks down glucose and forms pyruvate with the production of two molecules of ATP. The pyruvate is the end product of glycolysis.
- Glycolysis, the major pathway for glucose oxidation, occurs in the cytosol of all cells.
- It is unique, in that it can function either aerobically or anaerobically, depending on the availability of oxygen and intact mitochondria.
- It allows tissues to survive in presence or absence of oxygen, e.g., skeletal muscle.
- **RBCs**, which lack mitochondria, are completely reliant on glucose as their metabolic fuel, and metabolizes it by anaerobic glycolysis.

	Aerobic	Anaerobic
Presence of mitochondria and oxygen	Must have mitochondria and oxygen .	In absent of mitochondria or oxygen or both.
Number of steps	10 steps (reactions).	11 steps (reactions).
End product	End product is Pyruvate.	End product is Lactate or lactic acid .
Byproducts	Produce 2 ATP and 2 NADH = (8 ATP).	Produce 2 ATP

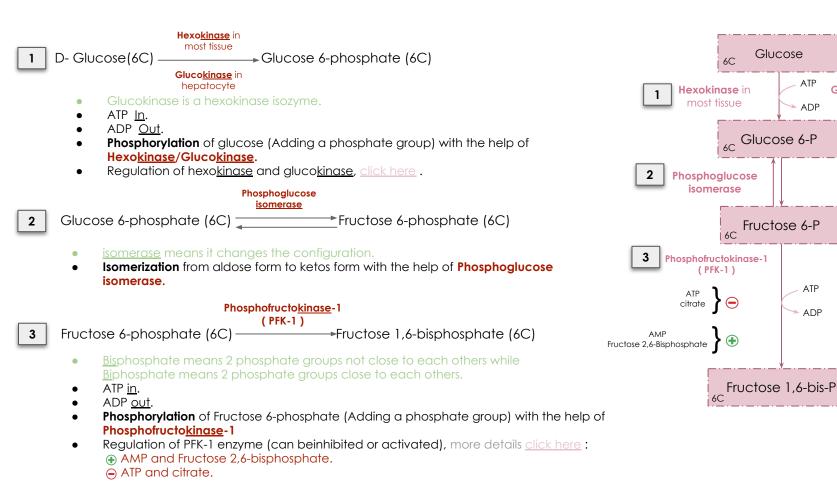




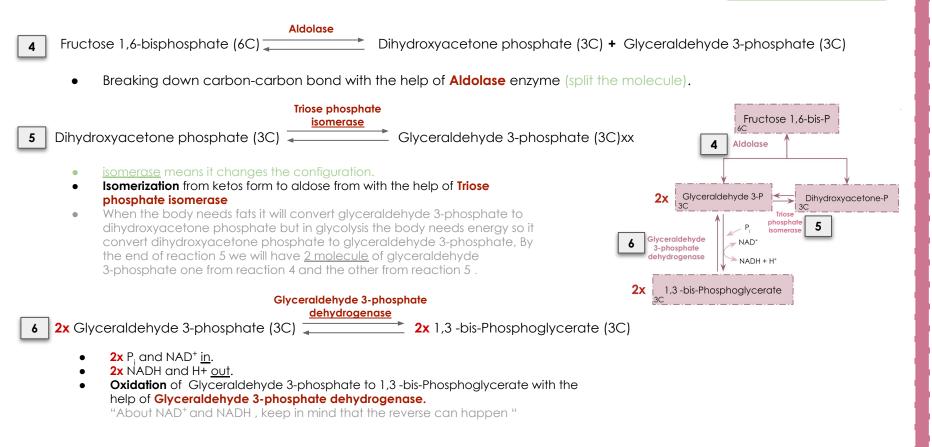
Aerobic glycolysis (overview)

reversible

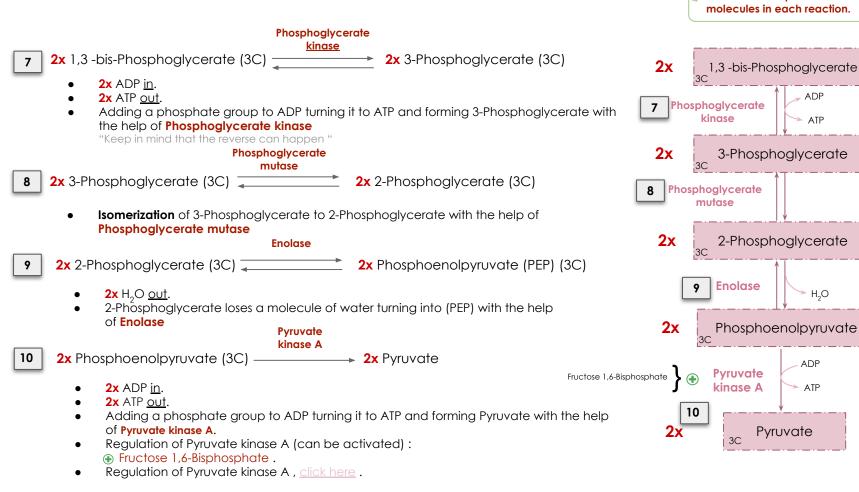
irreversible



Aerobic glycolysis (1)


Glucokinase in

hepatocyte


Aerobic glycolysis (2)

Aerobic glycolysis (3)

Reactions 6-10 produce two

Summary of the aerobic glycolysis In order for you to gain a better understanding In tables

Reaction 1		
Reactant	D-Glucose	
Product	Glucose 6-phosphate	
Enzyme	1- Hexokinase in most tissue 2- glucokinase in hepatocyte	
Action	adding phosphate	
Consume	1 ATP	

	Reaction 4	
Reactant	Fructose 1,6-bisphosphate	
Product	Dihydroxyacetone phosphate and Glyceraldehyde 3-phosphate	
Enzyme	Aldolase	
Action	Break down carbon-carbon bond (split the molecule)	
Consume	-	

	Reaction 2
Reactant	Glucose 6-phosphate
Product	Fructose 6-phosphate
Enzyme	Phosphoglucose isomerase
Action	Isomerization from aldose form to ketos form
Consume	-
	Reaction 5
Reactant	Dihydroxyacetone phosphate
Product	Glyceraldehyde 3-phosphate
Enzyme	Triose phosphate isomerase
Action	I somerization from ketos form to aldose from

______ . ____ . ____ . ____ . ____ . ____ . ____ .

Reaction 3	
Reactant	Fructose 6-phosphate
Product	Fructose 1,6-bisphosphate
Enzyme	Phosphofructo <u>kinase</u> -1 (PFK-1)
Action	adding phosphate
Consume	1 ATP

Reaction 6		
Reactant	2x Glyceraldehyde 3-phosphate	
Product	2x 1,3 Bisphosphoglycerate	
Enzyme	Glyceraldehyde 3-phosphate Dehydrogenase.	
Action	Adding Phosphate group to the molecule	
Byproduct	NADH	

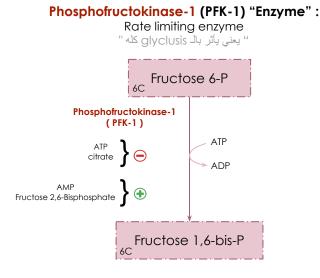
Summary of the aerobic glycolysis In order for you to gain a better understanding In tables ... contd

Reaction 7		
Reactant	2x1,3 Bisphosphoglycerate	
Product	2x 3-Phosphoglycerate	
Enzyme	Phosphoglycerate <u>kinase</u>	
Action	Phosphate group add to ADP to become ATP.	
Produce	2x ATP	

Reaction 10	
Reactant	2x Phosopheonolpyruvate
Product	2x Pyruvate
<u></u>	
Enzyme	Pyruvate kinase A
Enzyme	Pyruvate kinase A Phosphate group add to ADP to become ATP

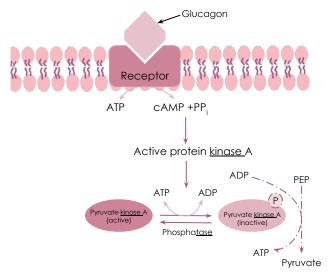
Reaction 8	
Reactant	2x 3-Phosphoglycerate
Product	2x 2-Phosphoglycerate
Enzyme	Phosphoglycerate mutase
Action	The P group change position from O in carbon-3 to O in carbon-2
Consume	

	Reaction 9	
Reactant	2x 2-Phosphoglycerate	
Product	2x Phosphoenolpyruvate	
Enzyme	Enolase	
Action	Remove water	


Regulation of enzymes "Hexokinase / Glucokinase "

- Regulation of hexokinase (in most cells) and glucokinase (in liver or we can say hepatocyte "hepato means liver and cyte means cell).
- Hexokinase : when Glucose 6-phosphate is abundant it will indicate to the cell that it doesn't need hexokinase anymore and it will be inhibited directly .
- Glucokinase : is an enzyme that facilitates phosphorylation of glucose to glucose-6- phosphate. It is is an isozyme of hexokinase.
 - 1. In the presence of high Fructose-6- phosphate, glucokinase translocates and binds tightly to GKRP (Glucokinase regulatory protein) in the nucleus, making it **inactive** " it will not work ".
 - 2. When glucose levels are high in blood and hepatocytes (GLUT-2), glucokinase is released from GKRP (Glucokinase regulatory protein) and enters the cytosol.

	Hexo <u>kinase</u>	Gluco <u>kinase</u>	
Site	All tissues (Hexo <u>kinase</u> have 4 isoforms all of them in all tissues except glucokinase)	Hepatocytes and pancreas cells	Glucose
Regulation by: (inhibition)	Glucose 6-phosphate	Fructose-6- phosphate	Glucose Glucose 6-phosphate
Regulation by: (stimulation)		Glucose	Fructose 6-phosphate Glucokinase
Function	Phosphorylates " adds a phosphate group on " glucose inside the body cells thus glucose concentration in blood is higher than glucose concentration in the cell.	After meals, it removes sugar " glucose " coming in the portal circulation, converting it into Glucose 6-phosphate	

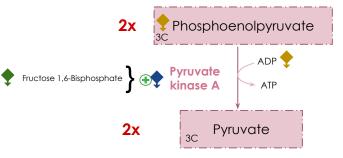


Regulation of enzymes "PFK-1 / Pyruvate kinase A "

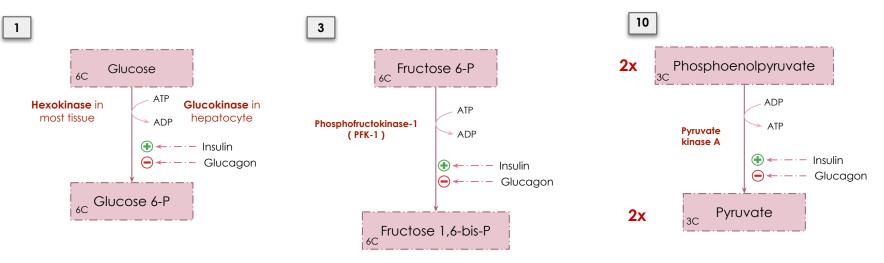
- Reaction number 3 in glycolysis it's <u>irreversible</u> reaction
 stimulated by AMP and Fructose 2,6-bisphosphate .
 inhibited by ATP and citrate.
- They are not involved in the chemical reaction, they have an allosteric effect.

Pyruvate <u>kinase A</u> Covalent Modification"Enzyme" :

Reaction number 10 in glycolysis it's <u>irreversible</u> reaction. once glucagon (hormone) bind to the receptor it convert the enzyme pyruvate kinase A from active from to an inactive form by phosphorylation.


Activation of enzyme can be done by phosphatase (removes a phosphate group)

When it's in the active form It catalyzes the transfer of a phosphate group from phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP), yielding one molecule of pyruvate and one molecule of ATP.


Pyruvate kinase deficiency: hemolytic anemia

- Pyruvate <u>kinase</u> deficiency is due to genetic mutation (it affects the survival of red blood cells).
- The enzyme may show an abnormal K_m or V_{max} for substrates or coenzymes.
- The enzyme may show an abnormal response to the activator fructose 1,6 - bisphosphate.
- Enzyme activity or stability may be altered , or the amount of enzyme may be decreased.
- Pyruvate <u>kinase</u> mutation may lead to :
 - 1. Altered enzyme Kinetics . (mutation in the allosteric binding site that will inhibit enzyme activity, since the F-1,6-P activate the enzyme so in this case altered allosteric site = inhibit/lower the activity of the enzyme).
 - 2. Altered response to activator. (mutation in the active site that will stop the enzyme activity, since the enzyme activity depend on its substrate mainly).
 - 3. Altered enzyme stability.
 - 4. Decreased amount of the enzyme.

Regulation of enzymes " long term regulation (hormonal) "

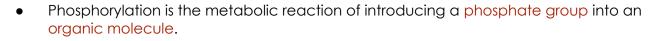
• Long term regulation of glycolysis in reactions 1, 3 and 10 :

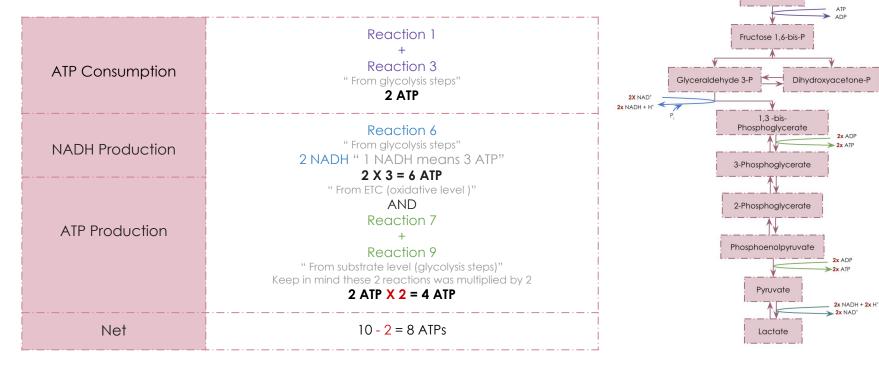
- Regulatory Mechanisms:
 - 1. Rapid and short-term: Allosteric and Covalent modifications are the enzymes regulation in the three irreversible steps.
 - 2. Slow and long-term: Induction/repression (insulin and glucagon respectively).

Substrate-level phosphorylation Vs. Oxidative phosphorylation

• Phosphorylation is the metabolic reaction of introducing a phosphate group into an organic molecule.

Oxidative phosphorylation	Substrate-level phosphorylation
"Production of ATP molecules from the redox reactions of an electron transport chain". Formation of high-energy phosphate bonds by phosphorylation ADP to ATP.	" Production of ATP molecules via transfer of a phosphate group from an intermediate high-energy substrate directly to ADP". Formation of high-energy phosphate bonds by phosphorylation ADP to ATP (or GDP to GTP).
Coupled to the transfer of electrons from reduced coenzyme to molecular oxygen via ETC	Coupled to cleavage of a high-energy metabolic intermediate (substrate)
In mitochondria (ETC).	In cytosol or mitochondria (glycolysis and Krebs cycle).


Aerobic glycolysis : ATP production


Glucose

Glucose 6-P

Fructose 6-P

ADP

★ To summarize

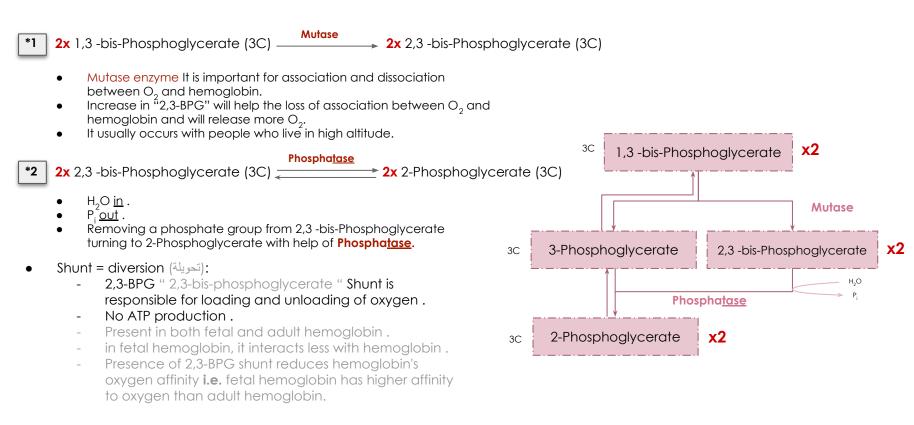
Aerobic glycolysis : ATP production

ATP consumed	2 A	.TP
ATP produced	Substrate-level (directly)	2 ATP <mark>x 2</mark> = 4 ATP
	Oxidative-level (in ETC)	2 NADH <mark>X 3</mark> = 6 ATP
Total	1(О
Net	10 " produced " - 2 "	consumed " = 8 ATP

Anaerobic glycolysis

- Anaerobic glycolysis is the transformation of glucose to lactate when limited amounts of oxygen (O₂) are available. Anaerobic glycolysis is only an effective means of energy production during short, intense exercise, providing energy for a period ranging from 10 seconds to 2 minutes.
- NADH is produced <u>cannot</u> be used by ETC for ATP production (No O_2 and/ or no mitochondria).
- <u>Less ATP production</u>, as compared to aerobic glycolysis.
- The end product of anaerobic glycolysis is lactate "obligatory output". (why?) Because if it is not formed, All cellular NAD⁺ will be converted to NADH, with no means to replenish (fill again) the cellular NAD⁺ Glycolysis stops death of the cell.
- Anaerobic Glycolysis is important in RBCs because they don't have mitochondria .

Anaerobic enzyme : Lactate dehydrogenase



Anaerobic glycolysis : ATP production

ATP consumed	2 ATF	כ
	Substrate-level (directly)	2 ATP <mark>x 2</mark> = 4 ATP
ATP produced	Oxidative-level (in ETC)	
	ماقدروا يطلّعون من الـ NADH طاقة لانه مادخل الـ ETC NADH can <u>NOT</u> be used by ETC (oxidative-level) because: there is no O ₂ and/or no mitochondria.	2 NADH <mark>X 3</mark> = 6 ATP
Total	4	
Net	4 " produced " - 2 " co	onsumed " = 2 ATP

Anaerobic glycolysis in RBC (2,3 BPG shunt)

Anaerobic glycolysis in RBC (2,3 BPG shunt) : ATP production

ATP consumed	27	ATP
ATP produced	Substrate-level (directly)	2 ATP x 2 = 4 ATP (without shunt) 1 ATP x 2 = 2 ATP (with shunt)
	Oxidative-level (in ETC) ماقدروا يطلعون من الـ NADH طاقة لانه مادخل الـ ETC NADH can <u>NOT</u> be used by ETC (oxidative-level) because: there is no O ₂ and/or no mitochondria.	2 NADH <mark>X 3</mark> = 6 ATP
Total	4 c	or 2
Net		med " = 2 ATP (without shunt) sumed " = 0 ATP (with shunt)

Anaerobic glycolysis in RBC (2,3 BPG shunt) "summary"

End product	 Lactate . No net production or consumption of NADH .
Energy yield	 If no shunt is formed = 2 ATP . If shunt occurs = 0 ATP .
PK deficiency hemolytic anemia depends on	 Degree of PK deficiency. Compensation 2,3-BPG

Take home messages

Glycolysis is the major oxidative pathway for glucose.

Glycolysis is employed by all tissues.

Glycolysis is a tightly-regulated pathway.

PFK-1 is the rate-limiting regulatory enzyme.

Pyruvate kinase deficiency in RBCs results in hemolytic anemia.

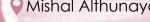
Quiz 🦉

Q1 : Oxidative phosp	phorylation happens in .			SAQ	s :	
A) Nucleus	B) Cytosol	C) Mitochondria	D) Rough ER			
Q2 : The net ATP prod	duction in Aerobic Glyc	olysis is		Q1: What is the function	of enolas	
A) 8 ATP	B) 4 ATP	C) 7 ATP	D) 5 ATP	enzyme ?		
Q3 : Which of the fol	lowing biochemical pa	l thways does NOT requi	re oxygen ?	Q2: How many NADH a glycolysis per glucose ?		
A) Krebs cycle	B) Glycolysis	C) ETC	D) Calvin cycle			
				★ MCQs Answer key:		
Q4 : The final produc	t of Anaerobic Glycoly	sis is		1) C 2) A 3) B 4)B 5) c	
A) Pyruvate	B) Lactate	C) Citrate	D) Acetyl coenzyme A	★ SAQs Answer key:		
Q5 : There are	steps reaction in aerc	bbic glycolysis				
A) 13	B) 20	C) 10	D)15	 Remove water, so it phosphoglycerat to 	will convert	
Q6 : The first 3 steps in	n glycolysis are	1	1	Phosopheonolpyruvo 2) 2 NADH	ate	
A) Irreversible	B) Reversible	C) Both of them	D) None of them			

Alia Zawawi Nada Babilli Rania Aqil Reem alamri Reema Alomar Reem Algahtani Renad Alhumaidi Shaden Alobaid Noura Alsalem Lama Alahmadi Sadem Alhazmi Somow Abdulrahman Budoor Almubarak Samar Almohammedi

Nuha Alkudsi Norah Alsheikh Muneerah Alssdhan Mayasem Alhazmi Noura alshathri Duaa Alhumoudi

Shatha Aldhohair



Mansour albawardi Hassan alshuraf Abdulrahman almbki Mohammed alsayari Abdullaziz alomar Abdulaziz alrabiah Saud alrasheed Abdullah almazro Hamad almousa Ahmad alkhayat

Mishal Althunayan

A goal should scare you a little and excite you a lot!.

Made by 오

