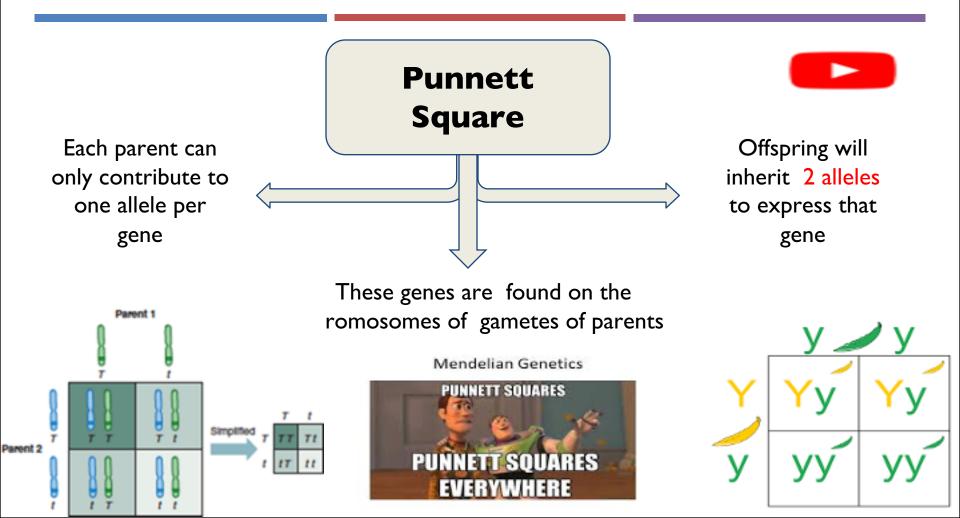

Objectives:


By the end of the lecture, the student should:

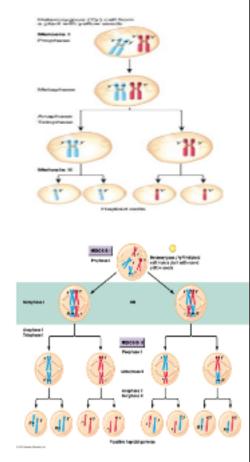
- Assess Mendel's laws of inheritance.
- Understand the bases of Mendelian inheritance.
- Define various patterns of single gene inheritance using family pedigree and Punnett square.

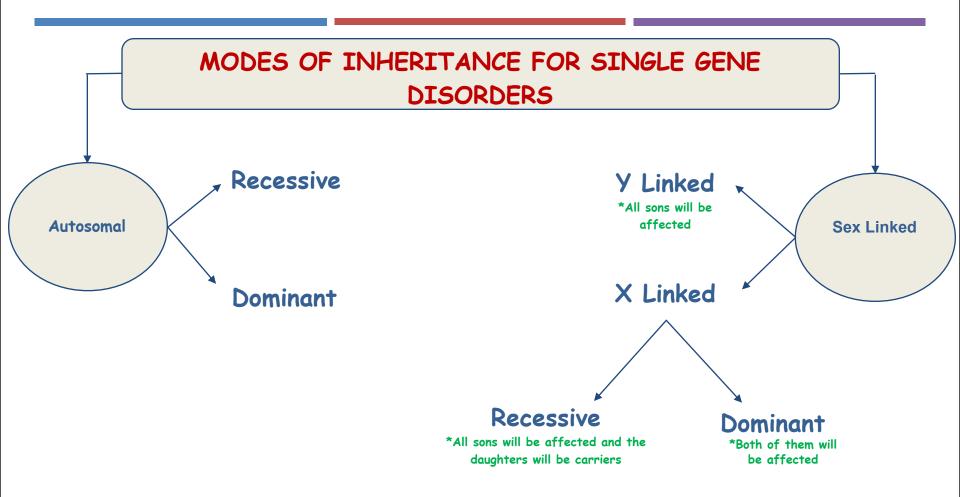
Interpreting the outcomes of Mendel's breeding experiments

- The plant characteristics being studied were each controlled by pair of factors, one of which was inherited from each parent.
- The pure-bred plants, with two identical genes, used in the initial cross would now be referred to as homozygous.
- The hybrid F1 plants, each of which has one gene for tallness and one for shortness, would be referred to as heterozygous.
- The genes responsible for these contrasting characteristics are referred to as allelomorphs, or alleles for short.

Laws of inheritance

Law of Dominance or Uniformity	LAW OF SEGREGATION	LAW OF INDEPENDENT ASSORTMENT
COMPLETE DOMINANCE: one allele is dominant to another allele. ➤ RECALL MENDEL'S 1st EXPERIMENT	Definition: the alleles of a given locus segregate into separate gametes. ➤ RECALL MENDEL'S 2nd EXPERIMENT	Definition: During gamete formation, different pairs of alleles segregate independently of each other. INTERPRETATION: In a dihybrid cross, each pair of alleles assorts independently during gamete formation. In the gametes,Y is equally likely to be found with R or r (that is, Y R = Y r);
CROSS: Pure-bred purple female x White male P1 generation = PP x	CROSS:Two F1 generation offspring with each other P1 generation = Pp x	the same is true for y (that is, y R = y r).As a result, all four possible types of gametes (Y R , Y r , y R , and y r) are produced in equal frequency among a large population.
Premate gametes P P P P P P P P P P P P P	Female gametes P	Allolos in parental cell - Gamoto formation - Possible allolo combinations in gamotos


THE CHROMOSOME THEORY OF INHERITANCE AND SEX CHROMOSOMES

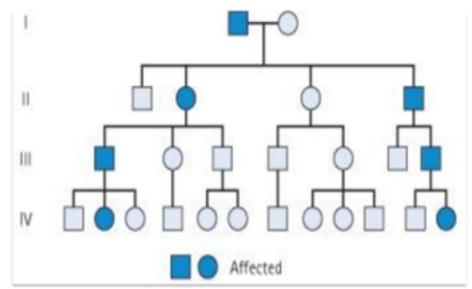

1-Mendel's law of segregation can be explained by the segregation of homologs during meiosis

- The two copies of a gene are contained on homologous chromosomes.
- In this example using pea seed color, the two alleles are Y (yellow) and y (green).
- During meiosis, the homologous chromosomes segregate from each other, leading to segregation of the two alleles into separate gametes.

2-Mendel's law of independent assortment can be explained by the random alignment of bivalents during metaphase of meiosis I

- This figure shows the assortment of two genes located on two different chromosomes, using pea seed color and shape as an example (YyRr).
- During metaphase of meiosis I, different possible arrangements of the homologs within bivalents can lead to different combinations of the alleles in the resulting gametes.
- For example, on the left, the dominant R allele has sorted with the recessive y allele; on the right, the dominant R allele has sorted with the dominant Y allele.

Autosomal Dominant


• The trait (character, disease) appears in every generation.

• Unaffected persons do not transmit the trait to their children.

Examples:

- I. Huntington disease
- 2. Myotonic dystrophy
- 3. Neurofibromatosis type
- 4. Marfan syndrome

Family Tree of an Autosomal Dominant Mode of Inheritance

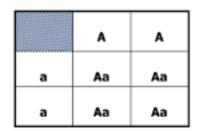
Note the presence of male-to-male (i.e. father to son) transmission

Autosomal Recessive

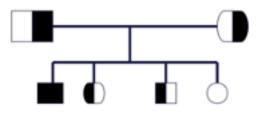
- The trait (character, disease) is recessive
- The trait expresses itself only in homozygous state
- Unaffected persons (heterozygotes) may have affected children (if the other parent is (heterozygote)
- The parents of the affected child maybe related (consanguineous)
- Males and female are equally affected

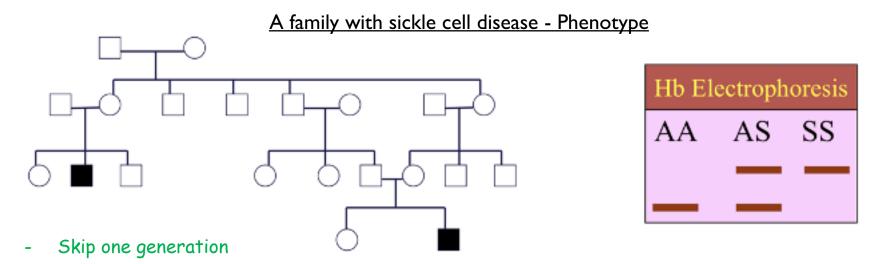
• <u>Examples: Cystic fibrosis, Phenyketonuria, Sickle cell</u> <u>anaemia, Thalassaemia</u>

Punnett square showing autosomal recessive inheritance


- 1) Both Parents Heterozygous: "Aa+Aa"
 - 25% offspring "affected Homozygous" (aa)
 - 50% Trait "Heterozygous normal but carrier" (Aa)
 - 25% Normal (AA)
- 1) One Parent Heterozygous: "AA+Aa"
 - 50% normal but carrier "Heterozygous" (Aa)
 - 50% Normal (AA)
- 1) One Parent Homozygous: "AA+aa"

- 100% offspring carriers. (all Aa)

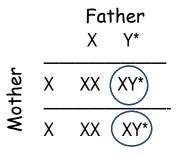

		Proferrea	
		Α	а
ather	A	AA	Aa
Ľ	а	Aa	aa


Mother

	A	а
A	AA	Aa
A	AA	Aa

Family tree of an Autosomal recessive disorder Sickle cell disease (SS)

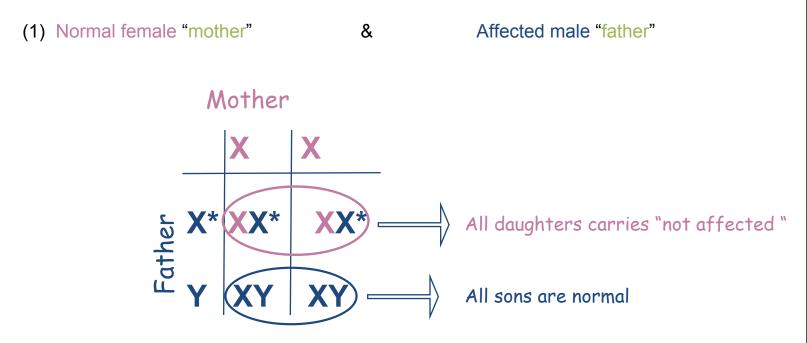
Sex-Linked Inheritance


- This is the inheritance of a gene present on the sex chromosomes.
- The Inheritance Pattern is different from the autosomal inheritance.
- Inheritance differs in males from females.

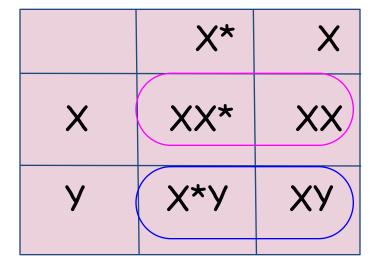
Two types: X-linked and Y-linked.

Y- linked Inheritance

- The gene is on the Y chromosomes
- The gene is passed from fathers to sons only
- Daughters are not affected
- Hairy ears in India
- Male are Hemizygous the condition exhibits itself whether dominant or recessive


X – Linked Inheritance

- The gene is present on the X chromosome
- The inheritance follows specific pattern
- Males have one X chromosome, and are hemizygous
- Females have 2 X chromosomes, they may be homozygous or heterozygous
- These disorders may be : recessive or dominant


X - Linked Recessive Inheritance

- The incidence of the X-linked disease is higher in male than in female
- The trait is passed from an affected man through all his daughters to half their sons
- The trait is never transmitted directly from father to sons
- An affected women has affected sons and carrier daughters
- X Linked Recessive Disorders: Albinism, Fragile X syndrome, Hemophilia, Muscular dystrophy, Retinitis pigmentosa

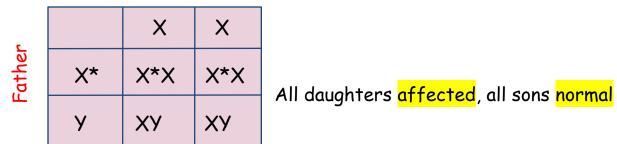
X - Linked Recessive Inheritance

(2) carrier female, normal male Mother

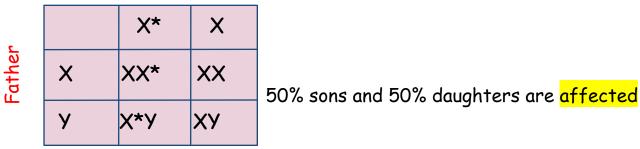
50% sons are affected 50% daughters carriers

(3) Homozygous female, normal male -all daughters carriers -all sons affected

Father


X -Linked Dominant Disorders

- The gene is on X Chromosome and is dominant
- The trait occurs at the same frequency in both males and females
- Hemizygous male and heterozygous females express the disease.


Punnett square showing X - linked dominant type of Inheritance

(1)Affected male and normal female

Mother

(2)Affected female (heterozygous) and normale male Mother

TAKE HOME MESSAGES

- > An accurate determination of the family pedigree is an important part of the workup of every patient
- Pedigrees for single-gene disorders may demonstrate a straight forward, typical mendelian inheritance pattern
- These patterns depend on location of the gene locus on the chromosomal, which may be autosomal or sex chromosome-linked, and whether the phenotype is dominant or recessive

Q1)Transmission of genes occurs:

A)Horizontally B)Vertically C)Diagonally D)Between Siblings

Q2)What is the law of dominance:

A)One allele dominant to another B)One allele recessive to another C)Autosomal dominant D)Autosomal Recssive

Q3)Condition resulting in Syndromes happening due to abnormalities in the Y-chromosome is

A)Homozygous B)Sex-linked C)Hemizygous D)Heterozygous

Q4)Changes in the Y chromosome will occur in:

A)Both female and male B)Male only C)Female only D)None

MCQs answers

4) B
3) C
5) V
1) B

Boys team

- Nawaf Alghamdi
- Ahmed Alkhawashki
- Bassam Alasmari
- Rayan Alzahrani
- Khalid AlOsaimii
- Abdulrahman Alswat
- Abdulmalik Mokhtar
- Hadi AlHemsi
- Hesham Alsqabi
- Yazeed Alomar
- Mohammed Benhjji
- Badr Alshahrani
- Homoud Algadheb

Girls team

- Ghaida Alasiri
- Arwa Algahtani
- Albandri Ahmad
- Aljoharah Albnyan
- Aljohara alshathry
- Alanoud Alshahrani
- Raghad Alasiri
- Renad Alhmidi
- Sara Alharbi
- Taif Almutari
- Abeer Awad
- Ghada Alabdi
- Noura Almassad
- Hind Almutywea

Team Leaders

- Sumo Abdulrahman
- Faisal AlFadel

: HumanGenetics439@gmail.com

#EDITING FILE