

Drug Metabolism

If you didn't understand any part from this lecture Click here! Important
In male and female slides
Only in male slides
Only in female slides
Extra information

Objectives

- Recognize the importance of biotransformation
- Know the different sites for drug metabolism

tance of biotransformation

- Define the major phase I and phase II metabolic reactions
- Describe the modulation of liver microsomal enzymes by inducers and inhibitors
- Mention two drugs that are known as enzyme inducers and inhibitors.
- Know the impact of first pass metabolism on drug bioavailability.

Any Future corrections will be posted on	ļ
the editing file.	2
make sure to check it frequently	
	1
Click <u>Here</u>	ŝ
	÷ 1

prodrug: the inactive drug that was in a **Detoxification** Biotransformation is required pharmaceutical form (tablet, capsule...etc). But after metabolism to water soluble form, it got for protection of body from toxic metabolites activated. Activation of prodrug (convert inactive form of drug to active form) **Inactivation or termination** of drug action (most drugs). team #437: To stop the effect of the drug. Patients may take several doses of a drug, so the old doses must be inactivated to prevent drug accumulation. Chemical reactions which occur in the body to change drugs from nonpolar lipid soluble forms to polar water soluble forms that are easily excreted by the kidney. kidney Intestinal Mucosa and Lumen Liver (the major site) plasma lungs

Levodopa

Dopamine

Prednisone

Prednisolone

skin

Drug Metabolism (Biotransformation)

Note: Remember that urine is basically made of water. So for the drug to be excreted from the body, it has to change to a water soluble form in order to dissolve in urine. (and this is the main goal of metabolism)

Intestinal Mucosa and Lumen

Gut Mucosa Mono-Amine Oxidase (MAO) .

Gut lumen (bacterial flora) Glucuronidase

Plasma	
Enzyme	Substrate
Catechol O-Methyl Transferase (COMT)	catecholamines (e.g. adrenaline, serotonin)
Catechol O-Methyl transferase (Adding methyl to the oxygen) $HO \rightarrow GAHCONT \rightarrow HO \rightarrow GAHCONT \rightarrow GAHC$	catechol: is a benzene ring that has two (OH) groups attached to it. If catechol ring has an amine then the structure is called catecholamine.
Esterases This enzyme acts on esters E.g. acetylcholinase acts on acetylcholine	Esters (Act on drugs as Local anesthetics)
Amidases e.g. Lidocaine	Amides (local anesthetic)

		• e.g Alcohol dehydrogenase: oxidation of alcohol (NAD+ → NADH)
Cellular sites of drug metabolism	Cytoplasm	Alcohol \longrightarrow Aldehyde \longrightarrow AcidEthanol \longrightarrow acetaldehyde \longrightarrow Acetic acid CH_3CH_2OH \longrightarrow CH_3CHO \bigcirc CH_3COOH
	Mitochondria	 N-acetyl transferase: Introduction of acetyl group (CH3COO-) MonoAmine Oxidase enzymes (MAO): Oxidation of catecholamines such as adrenaline
	Microsome	 Microsomal enzyme system = cytochrome P - 450 There are more than 20 families CYP1, CYP2, CYP3. Sub-families are identified as A,B, and C etc. In human: only 3 isoenzyme families are important CYP1, CYP2, CYP3 Oxidation - CYP 3A4 carry out biotransformation of the largest number (30–50%) of drugs. Expressed in liver and intestine (responsible for first pass metabolism at this site).
	Lysosomes	

Oxidation **Reaction:**

- Is addition of oxygen or removal of hydrogen.
- Is the most important drug metabolizing reaction.
- May be microsomal or non-microsomal.

Non-microsomal **Oxidation**:

Microsomal

Oxidation:

- occurs in cytosol or mitochondria
- These enzymes include oxidases & dehydrogenases

occurs in microsomes

- 😬 1) Monoamine oxidase (MAO):
- Is responsible for the metabolism of catecholamines as adrenaline and serotonin.
- Moclobemide: Is a Monoamine Oxidase(MAO) inhibitor. It increases serotonin in the brain. Used as antidepressant drug.

2) Xanthine oxidase:

- Is required for the oxidation of xanthine
- Hypoxanthine ---> xanthine ---> uric acid
- uric acid accumulation ---> GOUT
- Allopurinol: is an inhibitor of xanthine oxidase, and used in the treatment of gout.

Are required for oxidation of alcohols

- e.g. Alcohol dehydrogenase (convert alcohol to aldehyde).
- e.g. Aldehyde dehydrogenase (convert aldehyde to acid).

Reduction Reaction:	 Removal of oxygen or addition of hydrogen Can be microsomal or non microsomal 	Example: Levodopa Levodopa (DOPA) HO HO HO HO	Levodopa (inactive) dopamine (active) DOPA- dec OH =Can rem	convert into carboxylase rboxyl oval	*Parkinson's disease is treated with levodopa Dopamine $I \rightarrow I \rightarrow I$
Hydrolysis Reactions:	 all are <u>non microsomal</u> occurs by addition of water molecules in presence of enzymes and any 	1- Esterases : hydrolyze dru <u>esters</u> R ← OF Ester+ H2O → Acid + Alcoh	ugs that are ^{~~} ol	e.g. acetylch <mark>Acetylcholine</mark> ∺	$\begin{array}{c} \textbf{noline (neurotransmitter))} \\ \xrightarrow{estrases} \\ \textbf{acetate + choline} \\ \xrightarrow{3}c \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
	SUCN AS:	2- Amidases : hydrolyze dri <u>amides</u> <mark>Amide + H2O→ Acid + amin</mark>	ugs that are	e.g. lidocaine	(Used as local anesthetic) $\prod_{n=1}^{\infty} \prod_{n=1}^{\infty} \sum_{n=1}^{\infty} \sum$

Phase II Reactions

E.g

Conjugation Reactions

	Enzyme induction	Enzyme inhibition
Metabolism & excretion of drug itsel & co-administered drugs	Increase	Decrease (delay)
Action of the drug itself & co-administered drugs.	Decrease	Increase (prolong)
Activities of liver microsomal enzymes	Increase	Decrease
Examples of inducers & inhibitors	 Alcohol Cigarette smoking Phenobarbitone hypnotic Phenobarbitone hypnotic 	 Grape fruit Grape fruit Cimetidine Ketoconazole (antifungal)
Drug interactions	 oral contraceptives (birth control) & phenytoin (inducer) Oral contraceptive + phenytoin= failure of oral contraceptive(pregnancy) ملاحظة : الـ phenytoin رح يزيد عمل الإنزيمات اللي تكسر دواء منع الحمل ، فإذا كانت المرأة تاخذ الدوائين مع بعض ، إذن دواء منع الحمل رح يتكسر وما رح يقعد بالجسم وما رح تستفيد المرأة منه ، وبالتالي ممكن يحصل حمل . 	 <u>Warfarin</u> & erythromycin (inhibitor) Inhibition of warfarin metabolism → Increased anticoagulant effect (risk of bleeding). warfarin). warfarin در يقعد بالجسم أطول ويسبب نزيف .
May occur to:	Tolerance: decrease in the pharmacological action of the drug by continuous or repeated administration*Large doses of inducers will cause greater effect (increased metabolism)	

R

1) which one of these sites is not responsible for drug metabolism?						
A)	Skin	B) Kidney	C) Intestinal lumen	D) Spleen		

2) How many families are in the microsomal enzyme system ?						
A)	3	B) 10	C) 15	D) 20		

3) Most of drugs					A	NSV	VERS
A)	inactivate and terminate	B) detoxify	C) activate prodrugs	D) none of them		1	D
4) Hy	drolvsis reaction	is are?				3	

4) nyuruiysis reactions are?						
A)	microsomal	B) non microsomal	C) both	D) none	4	

	1	1

ANSWERS

D

B

B

B

5

6

7

8

L____ .

5) Th	5) The enzyme required for glucoronide conjugation?							
A)	Glyciene conjugation	B) Methyl transferase	C) Sulfo transferase	D) Glucouronyl transferase				
6) Slow acetylator phenotype leads to?								
A)	Hepatitis	B) Peripheral neuropathy	C) Excess metabolites produced	D) Increased isoniazid metabolism				
7) Wł	iich of these drugs	used for gout treatment	?					
A)	moclobemide	B) allopurinol	C) erythromycin	D) rifampicin				
8) Which of these drugs used as antidepressant ?								
A)	allopurinol	B) moclobemide	C) phenobarbitone	D) ketoconazole				

1) List 4 sites in the body that metabolise drugs.

2) What does Allopurinol do?

3) Where does the Non-microsomal oxidation occur ?

4) What is the difference between Phase 1 and Phase 2 reactions in terms of activity ?

ANSWERS

A1) Liver (Major site), Kidney, Skin, and intestinal mucesa

A2) it is an inhibitor for xanthine oxidase, and it is used to treat GOUT

A3 Cytosol or mitochondria

A4) Phase 1 metabolite may be active or inactive, while Phase 2 metabolite are inactive

Girls team members

منيرة السدحان

لينا المزيد

سارة القحطانى

نورة المسعد

وسام ال حويس رانيا المطيري

نورة الدخيل

Team leaders

طرفة الشريدي
 حمود القاضب

Boys team members

عبداللطيف المشاط احمد الحوامدة بسام الاسمري ماجد العسكر ال باسل فقيها بدر الشهرانى حمد الموسى فهد البواردى فيصل العتيبى محمد القهيدان يزيد القحطاني ق

this lecture was done by :

Contact us:

teampharma439@gmail.com

@pharmacology439

اسيل الشهري الجوهرة البنيان شادن العبيد سديم آل زايد روان باقادر سر ميس العجمي نورة السالم نوف السبيعي ندى بابللي سر دانه نائب الحرم