

Quantitative aspects of drugs

If you didn't understand any part from this lecture Click here! Important
In male and female slides
Only in male slides
Only in female slides
Extra information

- Determine quantitative aspects of drug receptor binding.
- Recognize concentration binding curves
- Identify dose response curves and the therapeutic utility of these curves.
- Classify different types of antagonism.

Quantity aspects of drugs

Concentration binding curves:

- A correlation between **drug concentration** [**C**] used (x- axis) and **drug binding** capacity at receptors [B] (y-axis).
- Is a relation between drug concentration & drug binding
 - i.e. Affinity

Dose- response curves:

- A correlation between **drug concentration** [D] used (x- axis) and **drug response** [R] (y-axis).
- Used to study how response varies with the concentration of the drug
- I.e. the relation between concentration and response

Concentration binding curves	 a correlation axis) and dru i.e. Affinity 	between drug concentration [C] used (x- ig binding capacity at receptors [B] (y-axis).	Binding ability of drug with receptor (receptor complex)		
Used to determine	(B _{Max})binding capacity	The total density of receptors in the tissue.			
	K _{D50}	The concentration of drug required to occupy 50% of receptors at equilibrium.	actional occup		
	affinity of drug for receptor	The higher the affinity of drug for receptor = the lower is the K _{n5n} . i.e. inverse relation (Binding potential = Bmax/K _{D50}).	Note: The higher the concentration, the higher the drug binding is going to be.(linear relationship)		

Graded Dose-respo nse Curve	 Relate drug Response is Gradual ind Curve is us Examples: I 	te drug concentration to <mark>response.</mark> conse is gradual lual increase in response by increasing the dose (continuous) <i>r</i> e is usual sigmoid in shape nples: low blood pressure, heart rate, blood glucose level cholesterol			
used to determine	(Emax) Maximum Efficacy	is the maximal biological response produced by a drug.			
	(<mark>EC50</mark>) Median Effective concentration	is the concentration of the drug that produces a response equal to 50% of the maximal response (E _{max}).(concentration that effect 50% of (Emax))			
	Potency	 The concentration of the drug required to produce a specified response (50% of the maximal response = EC₅₀) Potency of drugs can be compared using EC₅₀, The smaller the EC₅₀, the higher the potent of drug. It is inversely proportional to EC₅₀ 			
	Efficacy	- The higher efficacy of drug at the Maximum Effect	Potency higher at low Concentration of drug + we never look for efficacy or the Emax While the Efficacy we just look for the Emax		

Graded dose - response curve

Which of the following curves represent the least potent drugs ? E

Potency = 1 Concentration کلما زاد Potency یقل Potency

inversely proportional to each other

Which of the following drugs have the lowest efficacy ? E

It is better when the concentration is low and the effect is high

Note: As "EC₅₀" increases, the response will also increase.

More potent (A>B>C) 435 notes

436 notes: The potency of drug A is more than drug B&C. The efficacy of drug A&B are the same and they are have more efficacy than drug c.

Quantal Dose-respo nse Curve	 Relate drug concentration to % percentage of patients responding (all or none response). The response may be therapeutic response, adverse effect or lethal effect Examples: prevention of convulsion, arrhythmias or death. 			
used to determine	(<mark>ED50</mark>) Median <mark>Effective</mark> Dose	is a dose of the drug required to produce a therapeutic effect in 50% of individuals (present of response of action in 50% of the patients)		
	(TD50) Median Toxic Dose	is the dose of a drug required to produce toxic effects in 50 % of individuals.(Toxic effects=Side effects)		
	(LD50) Median Lethal Dose	is the dose of a drug required to produce <mark>death</mark> in 50 % of individuals.		
	Therapeutic index (TI)	 Therapeutic index = TD50/ED50 or LD50/ED50 Is a measure of safety profile High value =drug with wide margin of safety <u>e.g</u> diazepam, penicillin Small value = a narrow margin of safety <u>e.g.</u> digoxin, warfarin 	The larger the therapeutic index the more safe the drug e.g: <u>100</u> Is better than <u>4</u> 1	

Quantal dose - response curve

Antagonism

It is the decrease or the complete abolishment of the effect of one drug by the co-administration or combination with another drug.

1- PHYSIOLOGICAL ANTAGONISM	2- CHEMICAL ANTAGONISM	3- PHARMACOKINETIC
• Two drugs act on different receptors to produce opposite physiological effects.	 Simple chemical reaction between 2 drugs resulting into loss of activity No receptor 	• The antagonist effectively reduces the concentration of the active drug at the site of action.
 E.g. (Histamine) & (Adrenaline) Adrenaline -> vasoconstriction and bronchodilatation -> increase blood pressure . Adrenaline is used in anaphylactic shock. Histamine -> vasodilatation and bronchoconstriction -> decrease blood pressure 	<u>E.g</u> . Dimercaprol (which reduces heavy metal toxicity E.g. Lead)	<u>E.g.</u> Phenobarbitone (which accelerates hepatic metabolism of warfarin)

4- PI	Drug \longrightarrow Receptor $-$		
Comp	etitive	Non-Competitive	Agonist
reversible • Two drugs compete for the same receptor (only one is bound). • The antagonist partially or completely prevents the pharmacological effect of agonist. • Antagonist dissociate rapidly from receptor. • Antagonism can be overcome by increasing the concentration of the agonist. • Parallel shift of the D-R curve to the right, without any change in slope or maximum.	irreversible • Two drugs compete for the same receptor • Antagonist forms stable,permanent chemical bond with receptor. • The original response can not be overcome even by increasing the dose of the agonist. • No parallel shift • A decrease in slope and a reduced maximum are obtained.	 Antagonist block at some point the chain of events that stimulate the response of agonist. Agonist and Antagonist can be bound simultaneously (at the same time) Antagonism cannot be overcome by increasing concentration of agonist. 	Competitive Allosteric activator Allosteric inhibitor Competitive and non-competitive antagonism 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
e.g. acetylcholine and atropine	<u>e.g.</u> phenoxybenzamine and noradrenaline.	e.g. verapamil and noradrenaline.	0.01 0.1 1 10 100 1000 Agonist concentration (or dose) (arb. units)

Competitive reversible antagonist

Vs

Competitive irreversible antagonist

EC100

- When a drug binds to a receptor the fraction occupancy equals D/(D+K).
- It is impossible for a drug concentration to reach EC100 and EC0.
- Even if you increase D to a million there will always be a K in the denominator and as such will never truly reach EC100.

D= concentration of drug K= equilibrium binding dissociation constant

Only in male slides

Ν	CQ	Chec	k out the questions made by ire <u>here!!</u>	/ MQ Team439 about this			1
	1) The tendency of a drug to bind to the receptors is called?						
	A)	Affinity	B) Efficacy	C) Potency	D) EC50		
	2) Relate drug concentration to % percentage of patients responding is referred to?						
	A)	Graded Dose-Response	B) Quantal dose-response curve	C) Concentration-Binding curves	D) -		
	3) Which type of Antagonism has No receptor involved?						
		A)Pharmacodyna mic antagonism	B) Physiological antagonism	C) Chemical antagonism	D) Competitive (irreversible)	ANS	WERS A
	4) Two drugs compete for the same receptor and decrease in maximum effect are referred to?					2	B
	A)	Competitive	B) Competitive	C) Non Competitive	D) Physiological	3	C
		(Irreversible)	(reversible)			4	A
			*	*			

1) What's the main difference between reversible and irreversible Antagonism?

2) What is the total density of receptors in the tissues ?

3) Give an example of a drug that has a narrow margin of safety?

4)What is the relationship between KD50and affinity ?

ANSWERS

A1) In reversible antagonism the agonist is able to reverse the antagonist, while in the irreversible antagonism the agonist can't change the antagonist.

A2) The (BMax)binding capacity.

A3) Digoxin

A4) As the affinity gets higher, "(KD50)" decreases.(inversely proportional)

Girls team members

Team leaders

طرفة الشريدي
 حمود القاضب

Boys team members

عبداللطيف المشاط احمد الحوامدة الم تالي بسام الاسمري ماجد العسكر باسل فقيها عبدالرحمن الدويش حمد الموسى الله راكان الدوهان فيصل العتيبى محمد القهيدان يزيد القحطاني

منيرة السدحان لينا المزيد سارة القحطاني نورة المسعد المحويس ال حويس المطيري المطيري نورة الدخيل اسيل الشهري الجوهرة البنيان الله شادن العبيد سديم آل زايد روان باقادر ميس العجمى نورة السالم نوف السبيعى ندى بابللى دانة نائب الحرم

this lecture was done by :

Contact us:

teampharma439@gmail.com

@pharmacology439