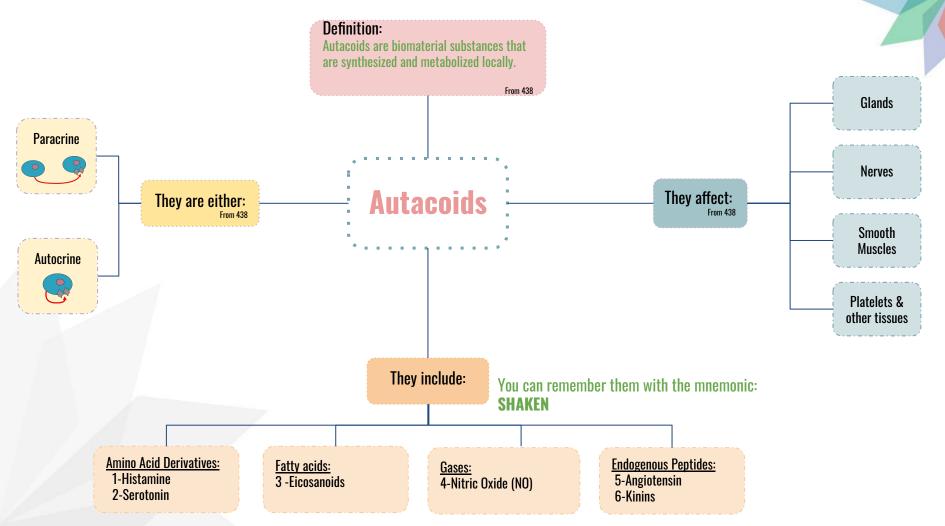


Autacoids Paracrine Mediator (Parts I & II)

If you didn't understand any part from this lecture Click here! Important
In male and female slides
Only in male slides
Only in female slides
Extra information

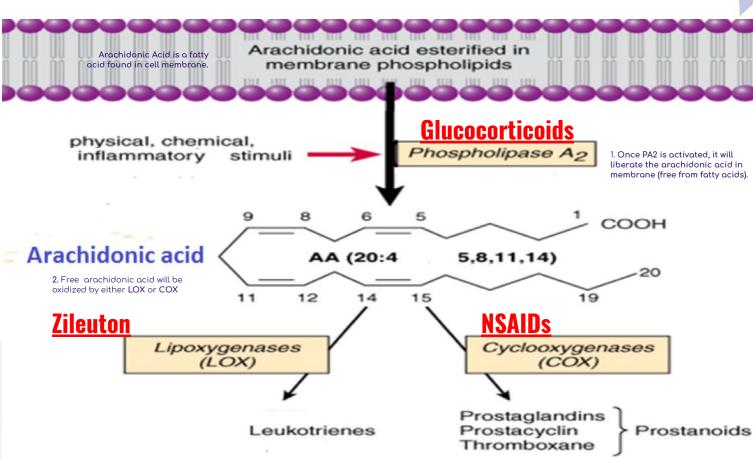


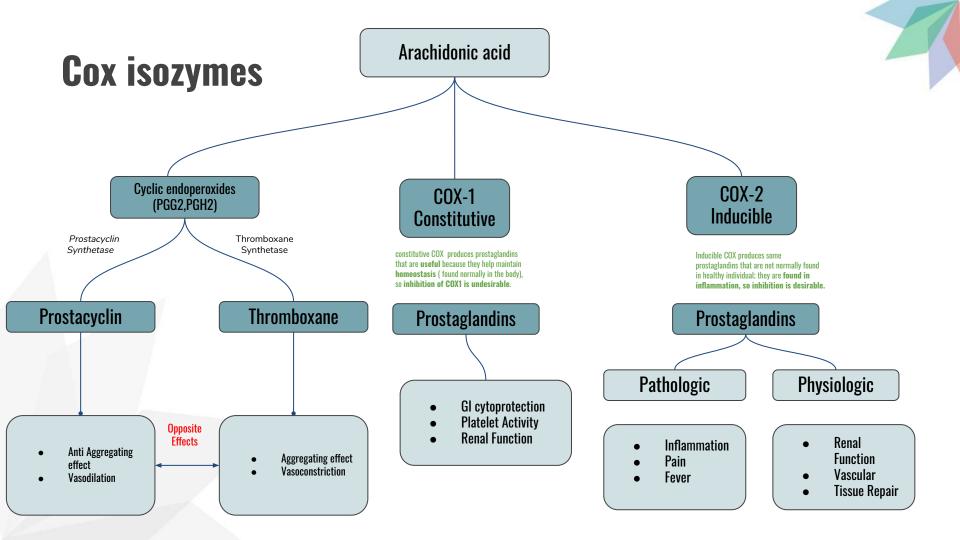
- To describe the synthesis, receptors, and functions of: histamine, 5-HT, eicosanoids, nitric oxide, angiotensin, kinins.
- To study the agents which enhance or block their effects.

We recommend studying this lecture with the pathology "inflammation pt3" lecture :)

	Synthesis	Histamine is synthesized from L-histid		
ne	Stored	• lungs • basoph		
Histamine	Delegend During	• allergic reactions		
	Released During	• inflammatory reactions		
		Rapid IV bolus injection fall in b increase		

Synthesis	Histamine is synthesized f	from L-histidine. $ \begin{array}{c} $
Stored	• lungs	basophils o mast cells o intestinal mucosa
Released During	allergic reactionsinflammatory reactions	Mast cell
	Rapid IV bolus injection IV = Intravenous	 fall in blood pressure (redness) increase in CSF pressure increase in CSF pressure
Actions	Slow IV or SC injection IV = Intravenous , SC = Subcutaneous	 flushing of skin (redness: Vasodilation)) increased blood flow to the periphery Increased heart rate & COP (through increasing Ca2+ influx) Raised temperature Edema (increases membrane permeability)
	Intradermal injection	• itching
Physiological Antagonist	Epinephrine (adrenaline)	


	Histamine Receptors (types)	Major Tissue Locations	Major Biologic Effects/Actions	Blockers Used when we don't want effects of .histamine	Clinical Use of Blocker
Histamine	H ₁	Smooth muscle, Endothelial cells, Brain	acute allergic responses , contract smooth muscles (bronchoconstriction, uterus , increases bowel peristalsis)	First generation: Diphenhydramine Promethazine	Has sedating effect Allergic Rhinitis urticaria Motion sickness insomnia Urticaria Note: read this picture
				Second generation: • <u>Cetirizine</u> • <u>Fexofenadine</u>	Non-Sedating effect Allergic conditions such as: Allergic rhinitis (nose) Conjunctivitis (eye) Urticaria
	H ₂	Gastric parietal cells, Cardiac muscle , Mast cell , Brain	H2 receptors of histamine play an important role in the formation & secretion of HCI (gastric acid) & increase in COP (cardiac output)	• <u>Cimetidine</u>	Inhibits gastric acid secretion Used in treatment of: Gastritis Peptic ulcer
	H ₃	Central nervous system	neurotransmission	• <u>Betahistine</u> (It produces dilatation of blood vessels in inner ear)	Used in treatment of : • Vertigo of Ménière's disease & other balance disturbances of vestibular origin Side effects: May produce headache & insomnia.
	H ₄	Mast cells, Eosinophiles, T-cells	regulating immune responses		


	SEROTONIN "CNS neurotransmitter"	synthesized from the amino acid L-tryptophan : > Tryptophan hydroxylized into 5-hydroxytryptophan > 5-hydroxytryptophan is decarbolized into 5-hydroxytryptamine(5HT) "serotonin"		
	DISTRIBUTION	 Intestinal wall: in chromaffin cells, in neuronal cells in the myenteric plexus responsible for intestinal movements Blood, in platelets: released when aggregated, in sites of tissue damage CNS: a neurotransmitter in midbrain 		
	RECEPTORS	7 receptor types that have sub types according to their distribution		
Serotonin (5-HT)	ACTIONS	 Increases GIT motility Contracts uterus, bronchiole, other smooth muscles Contracts large blood vessels by a direct action & relaxes other vessels by releasing NO → can cause both contraction & relaxation (Relaxation is indirect) Increases capillary pressure & permeability. Causes aggregation, aggregated platelets release 5-HT Neuronal terminals: 5-HT stimulates nociceptive neuron endings → pain CNS: stimulates some neurons & inhibits others, inhibits release of other neurotransmitters. 		
	5-HT RECEPTOR	AGONISTS: Buspirone: - 5-HT1A agonist, effective anxiolytic ("anti anxiety") Gisapride: 5-HT4 receptor agonist, used in gastroesophageal reflux & motility disorders. In gastroesophageal reflux, the gastric acid enters the esophagus through an open sphincter causing burning sensation→ patients are given antacids or prokinetic drugs (increases motility, decreasing the amount of contents in the stomach) 		
Se	CLINICAL CONDITIONS IN WHICH 5-HT IS Implicated	 MIGRAINE: Activation of trigeminal system leads to peptides release promoting an inflammatory reaction, which increases flow of sensory traffic through the brain stem, the thalamus & the cortex Neuropeptides release causing vasodilation and neurogenic inflammation→ Migraine, causing vasodilation only→ pain <u>SUMATRIPTAN</u>: 5-HT 1B, 1D & 1F-receptor agonists (binds with 3 types of 5-HT) effective in acute migraine attack: It binds to 5HT1B, in cranial blood vessels causing vasoconstriction & 1D & 1F in presynaptic trigeminal nerve causing inhibition of pro- inflammatory neuropeptid release. CARCINOID SYNDROME: malignant tumor of intestinal chromaffin cells, tumor releases 5-HT, SP (substance P responsible for inflammation and pain), PGs, kinins & histamine causing flushing, diarrhea, bronchoconstriction & hypotension → tumor will increase 5-HT <u>-Serotonin antagonists</u> (cyproheptadine, 5HT2 antagonist) could be administered to control diarrhea, flushing & malabsorption. They don't treat malignancy just control the symptoms 		

Eicosanoids Synthesis

-Eicosanoids are signaling molecules derived from arachidonic acid. Examples: -Prostaglandins (including Prostacyclins) -Thromboxanes -Leukotrienes

Drugs block eicosanoids by inhibiting the enzymes that produce them. Ex of inhibitor drugs: -Glucocorticoids (inhibits PA2) -Zileuton (inhibit LOX) -NSAIDS (inhibit COX)

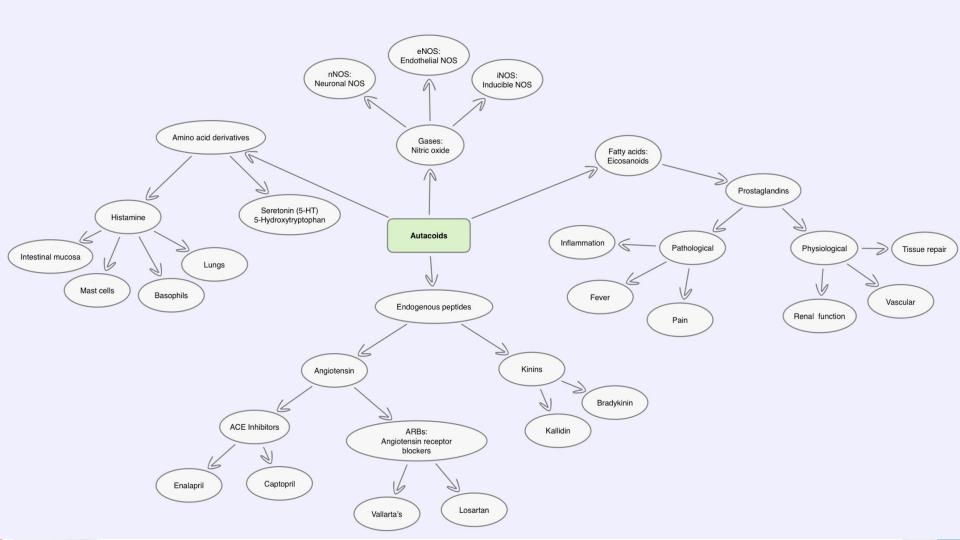
Actions of Prostaglandins

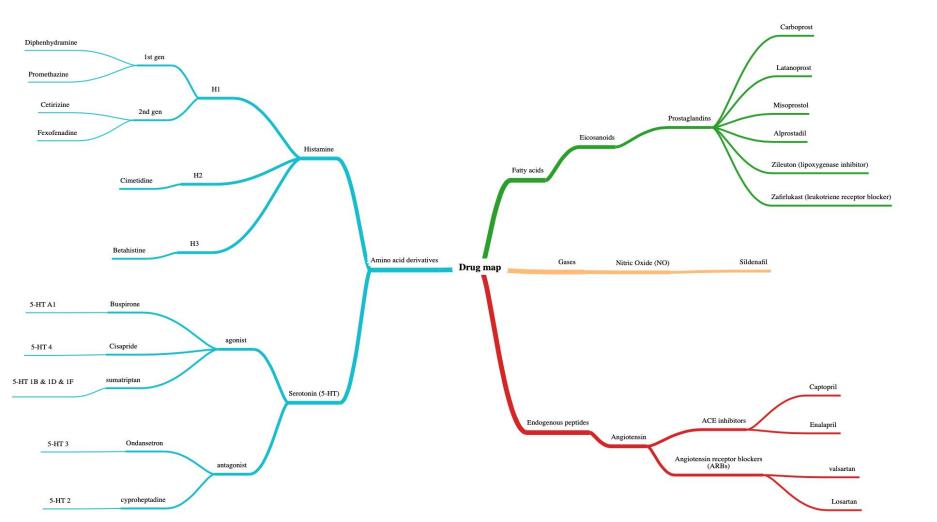
Clinical Uses of Prostaglandin Analogs (drugs that have same effect as prostaglandins)

- Cause vasodilation (PGI2 & PGE2)
- High PG conc: inhibits of platelet aggregation
- Low PG conc: increases platelet aggregation
- Sensitize neurons to cause pain
- Induce labor (in last trimester to contract uterus)
- Decrease intraocular pressure
- Acts on thermoregulatory hypothalamus to increase body temperature
- Acts on kidney to increase glomelur filtration (Vasodilation increases permeability which means more filtration)
- Acts on stomach parietal cells to protect gastric mucosa (protects stomach)

Analog (Drug)	Effect
<u>Carboprost</u>	Induces abortion in 1st trimester (by causing contractions in the smooth muscles of the uterus)
<u>Latanoprost</u>	Glaucoma (reduces high pressure in eye)
<u>Misoprostol</u>	Peptic ulcer (by inhibiting acid secretions)
<u>Alprostadil</u>	Erectile dysfunction (By Vasodilation)
Zileuton (lipoxygenase inhibitor)	
Zafirlukast (leukotriene receptor blocker)	Bronchial Asthma

Protective Factors • Mucus • Bicarbonate • Bicarbonate • Blood flow to mucose • Prostaglandins Healthy mucosa


	Biosynthesis	Synthesized from L- arginine by nitric oxide synthase
Nitric Oxide (NO)	Stimulation/Inhibition	NO release is stimulated by: -5-HT acetylcholine -Bradykinin, -Serotonin -histamine
	Mechanism of Action	NO activates guanylate cyclase (by combining with its haem) This increases cGMP (cyclic guanosine monophosphate) Thereby lowering calcium (Ca2+) Huscle relaxation Nitric oxide Nitric oxide Cyclic guanosine monophosphate)
	Actions of NO	 Blood vessel dilator Inhibition of platelet/monocyte adhesion/aggregation (protection against atherogenesis= plaque formation) Inhibition of smooth muscle proliferation Host defence and cytotoxic effects on pathogens Cytoprotection Synaptic effects in the peripheral and central NS
	Therapeutic Uses of NO	 -Overproduction of NO occurs in: neurodegenerative diseases(e.g. Parkinsonism) and in septic shock -Reduced endothelial NO production in: diabetes, hypertension, angina pectoris, atherosclerosis (NO is used to treat them): Used for patients with right ventricular failure secondary to pulmonary embolism Used in critical care to treat pulmonary hypertension in neonates -Treatment of erectile dysfunction is done by <u>Sildenafil</u>(viagra) (it potentiates the action of NO on corpora cavernosa smooth muscles).


	Nature of NOS isoform	Form of NOS	Location of NOS isoform	Action of NOS isoform	
	1.Neuronal NOS (nNOS)	- Constitutive Form (Physiological)	-Neurons -Skeletal muscle	 long-term potentiation (synaptic effects in the peripheral and central NS) cardiac function peristalsis sexual arousal 	
Isoforms of Nitric Oxide Synthase (NOS) (the enzyme that makes NO)	2.Endothelial NOS (eNOS)		-Endothelium -Cardiac myocytes -Osteoblasts -osteoclasts	 vascular tone (vasodilation) airway tone (bronchodilation) regulation of cardiac function and angiogenesis insulin secretion embryonic heart development 	
	3.Inducible NOS (iNOS)	Pathological	-Macrophages -Neutrophils -Fibroblasts -Kupffer cells(specialized macrophages in the liver) -Vascular smooth muscle	-in response to attack by parasites, bacteria,and tumor growth -causes septic shock and autoimmune conditions	

Angiotensin	Biosynthesis	Renin ACE* Angiotensinogen Angiotensin I (Ag I) (from the liver) (inactive form) Renin(released from kidney) converts angiotensinogen to Ag I ACE converts Ag I to Ag II *ACE: Angiotensin Converting Enzyme			
	Action	-Promotes vasoconstriction (-directly or indirectly- by releasing NA and AD) (noradrenaline, adrenaline) -Increases force of contraction of the heart by promoting calcium influx -water and sodium retention by increasing the aldosterone release -Disadvantages: Causes hypertrophy of vascular and cardiac cells Increases synthesis and deposition of collagen by cardiac fibroblast (remodeling) Ex. heart enlarging with age			
	ACE Inhibitors Note: ACE inhibition is coupled with increased kinins	Cause a fall in blood pressure in hypertensive patients (especially those with high renin levels) Examples: <u>Captopril</u> , <u>Enalapril</u> Clinical uses: hypertension, cardiac failure(reduce heart hypertrophy),& after myocardial infarction			
	Angiotensin receptor blockers (ARBs)	-AT 1 receptors predominate in vascular smooth muscle, mediate most of the known actions of ANG, coupled to G proteins & DAG -Angiotensin receptor(AT ₁ and AT ₂) blockers: Losartan, valsartan -The therapeutic uses are similar to ACE inhibitors			

Synthesis	Bradykinin is formed by proteolytic cleavage of kininogens (circulating proteins	Kininogen Kininases I & II kininase II = ACE Kallikrein BRADYKININ Inactive peptides	
Types	Bradykinin and Kallidin		
Actions	-Potent(strong) vasodilator, reduces blood pressure -Local injection will dilate arterioles (by generation of PGI and releasing NO and increasing the permeability of capillary venules) - Contracts most smooth muscles -SLOW and LAST LONG- (intestine, uterus, bronchiole) - Stimulation of epithelial ion transport and fluid secretion in airways and GIT - Causes pain , this effect is potentiated by prostaglandins - Has a role in inflammation		
D	B ₁	B2	
Receptors and their Actions (Both receptors are G protein-coupled receptors)	- Inducible under inflammation - Low affinity to bradykinin -Plays a significant role in inflammation and hyperalgesia	- Constitutive - High affinity to bradykinin and mediates the majority of its effects	
Therapeutic uses	-No current therapeutic use of bradykinin ACE inhibitors Increase bradykinin resulting in cough	Bradykinin ACE Inhibitor Vasodilation ACE (from lungs)	

Kinins

1) H ₂	receptor block	cers used to treat :				
A)	Gastritis	B) insomnia	C) headache	D) conjuntivitis		
2) Hi	stamine stored	l in :				
A)	Mast cells	B) basophils	C) lung	D) all of them		
					ANCI	WEDQ
3) wl	nich of the follo	owing increases bowel p	eristalsis:		AUSI	1 <u> </u>
A)	H ₂	B) H ₃	C) H ₁	D) H ₄	1	A
	2		i	·····	2	D
4) W	hich of the follo	owing causes a hypertro	ophy in the cardiac cells		3	C
A)	NO	B) bradykinin	C) angiotensin	D) kallidin	4	C

7

8

n

C

5) Captopril	is an	example of
--------------	-------	------------

A)	ACE inhibitor	B) ACE activator	C) Angiotensin receptor blocker	D) Renin inhibitor	
6) Which of the following receptors have High affinity to bradykinin					
A)	B1	B) B₂	C) AT I	D) AT II	

7) Nitrous Oxide synthase is inhibited by							VERS
A)	Glucocorticoids	B) Zileuton	C) Bradykinin	D) Hemoglobin		5	
						6	B

8) Which of the following drugs is used to treat bronchial asthma by inhibiting lipoxygenase						
A)	Zafirlukast	B) Latanoprost	C) Zileuton	D) Carboprost		

A)	Vasoconstriction	B) Cytoprotection	C) Host defenses and	D) Inhibition of smooth
			cytotoxic effects	muscle proliferation

10) Serotonin is synthesized from the amino acid:

A)	5-hydroxytryptop han	B) L-Tryptophan	C) 5-hydroxytryptamine	D) cyproheptadine

11) Sumatriptan is used for:					ANS	WERS
A)	anxiety	B) CARCINOID SYNDROME C) acute migraine D) gastroesophageal attacks reflux			9 10	B
12) Ondansetron is a selective antagonist for 5-HT receptor					11	C
A)	5-HT4	B) 5-HT1A	C) 5-HT3	D) 5HT2	12	C

1) what's the difference between drugs that prevent the effects of histamine and drugs the prevent the effect of of eicosanoids?

2) what are types of H receptor blocker ? Give example

3) what is the major biological effect of H_3 ?

4) What are the examples of Angiotensin receptors blockers -2 examples-

5) List 3 examples of nNOS actions

6) Give 2 examples of Prostaglandin analogs and their uses

ANSWERS

A1) drugs the prevent histamine effect are receptor blockers whereas drugs that prevent cicosanoid effect are enzyme inhibitors
A2) First generation: Diphenhydramine - Second generation ; Fexofenadine
A3) neurotransmission
A4) Losartan and valsartan
A5) Cardiac function, Peristalsis, Long term potentiation
A6) 1 Latanoprost: Glaucoma 2 Misoprostol: Peptic Ulcers

7)What is the function of Renin and from where is it released?

8) What will a local injection of bradykinin cause?

9) 5-HT implications cause which clinical conditions?

10) What is Serotonin's action on blood vessels?

11) Give examples of the two types of drugs that work on 5-HT receptors

12) List 2 differences between Thromboxane and Prostacyclin

ANSWERS

A7) convert angiotensinogen to angiotensin I, and it's released from the kidney

A8) dilates arterioles

- A9) Migraine and carcinoid syndrome
- A10) Contracts large blood vessels by a direct action & relaxes other vessels by releasing NO

A11)-agonists: Buspirone and Cisapride , antagonist: Ondansetron

A12) Thromboxane has an aggregating effect and causes vasoconstriction, while prostacyclin has an anti

aggregating effect and causes vasedilation

Girls team members

Team leaders

طرفة الشريدي
 حمود القاضب

Boys team members

ت عبداللطيف المشاط m احمد الحوامدة بسام الاسمرى ماجد العسكر باسل فقيها عبدالرحمن الدويش حمد الموسى راكان الدوهان فيصل العتيبى محمد القهيدان يزيد القحطاني

منيرة السدحان لينا المزيد سارة القحطاني نورة المسعد وسام آل حويس رانيا المطيرى نورة الدخيل اسيل الشهرى الجوهرة البنيان شادن العبيد 📰 سديم آل زايد روان باقادر ميس العجمى نورة السالم 📆 نوف السبيعي ندی بابللی دانه نائب الحرم

this lecture was done by :

Contact us:

teampharma439@gmail.com

@pharmacology439