

Blood physiology 1

Red: Important Black: In Male & Female slides Blue: In male slides Pink: In female slides Green: Notes & extra information

Team Leaders: Haya Alenazi Abdulrahman Alswat

Objectives

- Describe the physical characteristics & composition of blood
- List the common functions of blood.
- Define the process of erythropoiesis, Discuss its sites and stages.
- Describe the functions of red blood cells.
- Enumerate the factors affecting erythropoiesis.
- The role of hypoxia & erythropoietin hormone in the process of erythropoiesis.

Major Components of the Circulatory System

This slide was found only in male slides

RBCs life cycle & fate:

RBCs Erythropoiesis Formation of new RBC

Sites:

Bone marrow, (3 situations) 1-During intrauterine life: A) Early few weeks of embryo formed in yolk sac. B) Middle trimester in liver & spleen & lymph nodes. C) Last months formed in bone marrow of all bones 2-Before age of 20 years: Bone marrow of all bones. 3- After age of 20 years: Bone marrow of membranous bones only After Birth: -Bone marrow of flat

bone(sternum,ribs) continue to produce RBCs into adult life

-Shaft of long bone stop to produce RBCs at puberty while epiphysis continued.

RBCs Erythropoiesis Factors:

1- Oxygen supply to the tissues (Hypoxia).

2- Dietary requirements (Vitamins- Iron - Copper - Cobalt - Zinc -Other elements).

3- Healthy organs (Bone marrow -Liver - Kidney).

4- Hormones (Erythropoietin -Androgens - Thyroxine - Cortisol)

RBCs development is characterized by:

-Decrease in cell size -Disappearance of nucleus -Appearance of hemoglobin In case of rapid RBC production, high concentration of reticulocytes in the circulation

Regulation of RBC production: Erythropoiesis is <u>stimulated by</u> <u>erythropoietin hormone</u> produced by the kidney in response to hypoxia (low oxygen in the blood)

Normal bone marrow conversion

Erythropoietin effect:

Importance	Tissue oxygenation is the most essential regulator of RBCs production. The mechanism is via the stimulatory effect of hypoxia on the release of erythropoietin hormone (stimulate the growth of early stem cells)
Nature	Glycoprotein with a molecular weight =34,000
Site of release	Mainly from the kidney(renal cortex)(90%), 10% from the liver
Site of action	Bone marrow.
Action	Stimulate the growth and differentiation of early hematopoietic stem cells

Clinical correlation:

In case of renal disease, the person becomes anemic, and the liver can NOT compensate the role of kidneys in releasing erythropoietin.

Anemia of renal disease is treated with erythropoietin Erythropoietin does not affect maturation process. can massacred in plasma & urine.

conditions like : anemia, high altitude, heart failure, lung disease. result in high erythropoietin levels and polycythemia.

Role of the kidneys in RBCs formation

RBCs Erythropoiesis Factors: Oxygen supply to the tissues (Hypoxia)

QUIZ!

MCQs <u>SAQ</u> Q1: after the age of 20, which bone is NOT responsible for RBCs erythropoiesis: *Q1: How can anemia for renal* disease treated by? D) ulna A) vertebra B) sternum C) ribs 02: What is the benefit of Q2: Macrophages that remove damaged cells are found in: carbonic anhydrase enzyme? A) spleen kidney B) liver lungs C) spleen & liver D) kidney & lungs Q3: In which situation that the liver, spleen & lymph nodes erythropoiesis RBCs : 8 (¥ A (E B) last month of intrauterine C) first few weeks of D) first month after birth A) middle trimester of 5) C intrauterine intrauterine ۵ (۱ MCQs key answer: Q4: Erythropoietin is released from: 2) buffering. B) kidney C) lungs D) liver A) bone marrow

SAQ answer key : 1) by erythropoietin.

Thank You

Team members:

- ماجد العسكر ⊳
- مشعل الثنيان ⊳ عبد العزيز الربيعة ⊳
- باسل فقيها ⊳
- محمد بيارى ⊳
- ⊳ محمد السلمان
- عبد الرحمن الدويش ⊳
- مرشد الحربى ⊳
- منيب الخطيب ⊳
- نايف الشهرى ⊳
- فيصل العمرى ⊳
- عبد العزيز الغليقة ⊳
- عبد العزيز السحيم ⊳
- شذى الظهير ⊳ سمو الزير ⊳ نورة الشثرى ⊳ ⊳ ريناد الحميدي ⊳ ياسمين القرنى ⊳ يارا الزهرانى ⊳ لمي الأحمدي ⊳ آلاء السلمى ⊳ \triangleright بدور المبارك ⊳ فرح البكر ⊳
 - سارة القحطانى سارة العيدروس

حصة العليان

سارة العبيد ⊳

Contact info:physiology439@gmail.com

