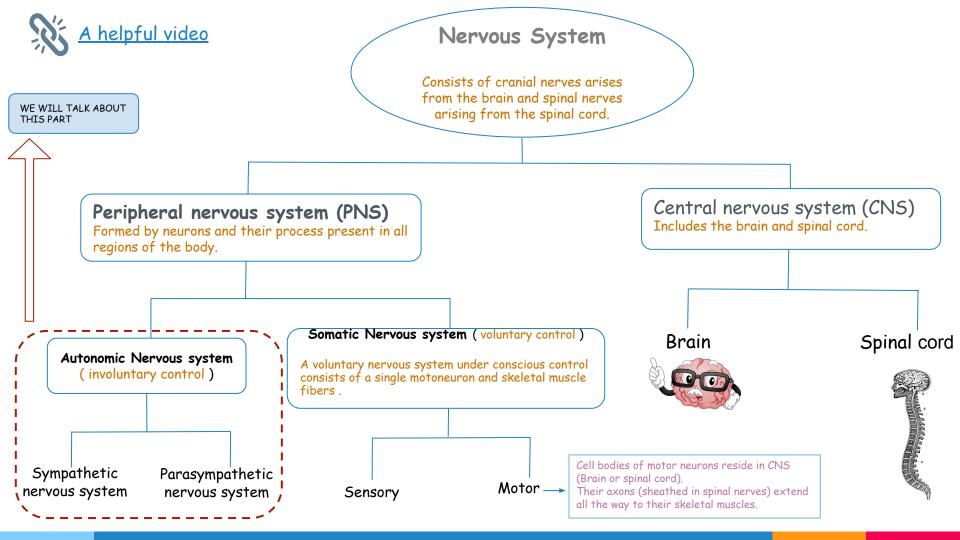


Autonomic Nervous

system


Team Leaders: Haya Alenazi Abdulrahman Alswat

Red: Important Black: In Male & Female slides Blue: In male slides Pink: In female slides Green: Notes & extra information

Objectives

- appreciate the anatomy of sympathetic & parasympathetic nervous system.
- explain physiological functions of Sympathetic & parasympathetic nerves in the head & neck,chest,abdomen and pelvis.
- describe neurotransmitters that can release at pre and postganglionic of Autonomic NS.
- Describe Autonomic NS receptors.
- Organization of the Autonomic Nervous System.
- Terminology.
- Sympathetic Nervous System (SNS).
- Neurotransmitters and Types of Receptors.
- Parasympathetic Nervous System.
- Autonomic Receptors: Adrenoreceptors, Cholinoreceptors.
- Prototypes of Agonists and Antagonists to Autonomic Receptors.
- Sympathetic and Parasympathetic tone.
- Function of Adrenal Gland.
- Examples of the Effects of Sympathetic and Parasympathetic.

This slide was found only in male slides

Terminology

Sympathetic	Anatomical terms that refer to anatom origin of preganglionic neurons in the
Parasympathetic	central nervous system (CNS)
Adrenergic	Terms that are used to describe neurons of either division, according to which
Cholinergic	neurotransmitter they synthesize and release.
Adrenergic neurons	Release norepinephrine and the receptor is adrenoreceptor.
Cholinergic neurons	Release Acetylcholine (Ach) and the receptor is Cholinergic.

Autonomic nervous system

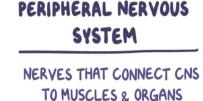
It's an involuntary nervous system that modulates and controls the function of visceral **MALES DEFINITION** organs. Or it's the subdivision of the peripheral nervous system that regulates body activities **FEMALES DEFINITION**

Or it's the subdivision of the peripheral nervous system that regulates body activities that are generally **not under conscious control**. **Visceral motor innervates non-skeletal (non-somatic) muscles.

• Autonomic nervous system (ANS) consists of two major divisions: Sympathetic & Parasympathetic .

 $\boldsymbol{\cdot}$ ANS is activated by centers in spinal cord, brainstem and hypothalamus

ANS is operated by visceral reflex


Organization of autonomic nervous system motor pathway consists of two neurons:

- Preganglionic neuron. (Release Acetylcholine (Ach))
- Postganglionic neuron. (Release either Ach, or norepinephrine)

**Axon of 1st (preganglionic) neuron leaves CNS to synapse with the 2nd (ganglionic) neuron. **Axon of 2nd (ganglionic) neuron extends to the organ it serves.

Composed of a special group of neurons serving

~ SOMATIC --> CONTROLS SKELETAL MUSCLES

~ AUTONOMIC

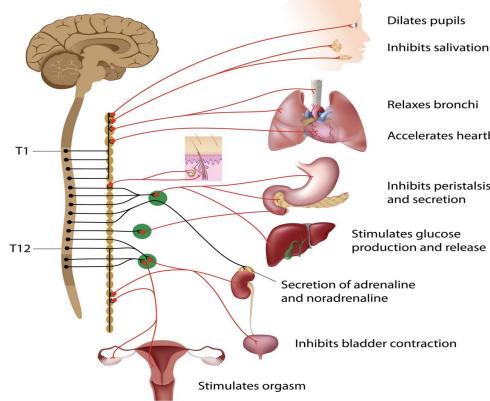
SYMPATHETIC PARASYMPA

SMOOTH MUSCLES & GLANDS

PARASYMPATHETIC

Sympathetic nervous system

Operate continuously to modulate the functions of many organ systems. (Heart, blood vessels, gastrointestinal tract, bronchi, and sweat gland)


- Stressful stimulation activates SNS leads to a response known as "fight or flight" that <u>increases arterial</u> <u>pressure</u>, <u>blood flow</u>, <u>blood glucose</u>, <u>metabolic rate</u>, <u>and mental activity</u>.
- Sympathetic nervous system is regulated by neurons in the Posterior part on the hypothalamus.
- Sympathetic preganglionic neurons originate from thoracolumbar spinal cord (T1-L3).
 1- Thoracolumbar lateral horns of the spinal segments T1-L2.
 2-Nerve fibers originate between T1 and L2.
 EXTRA INFORMATION:

Most people stop at L2, But some other people stop at L3

Next slide

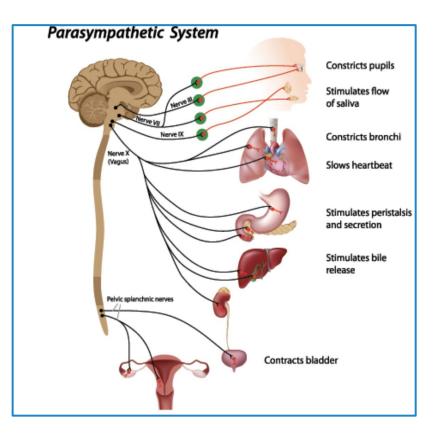
- SNS ganglia are located near the spinal cord either in the paravertebral ganglia (Sympathetic chain) or in the prevertebral ganglia.
- Preganglionic neurons are short, lightly myelinated.
- Postganglionic neurons are long, unmyelinated.

Sympathetic System

The sympathetic nervous system inhibits all of the glands secretion except sweat glands.

Accelerates heartbeat

Inhibits peristalsis and secretion

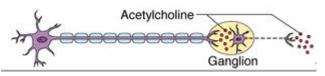

production and release

! 1- Paravertebral Ganglia: (sympathetic chain) near vertebral body.

2- Prevertebral Ganglia: Ganglia between Paravertebral Ganglia and the target organ near large blood vessel in gut: celiac, superior mesenteric & inferior mesenteric

Parasympathetic nervous system

с.

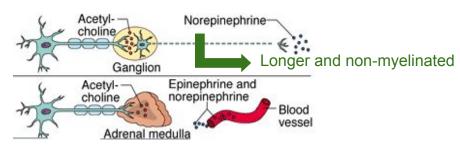

•	Ganglia close to or on target organs. Origin : 1- Craniosacral cell bodies of the motor
nucle	i of cranial nerves III, VII, IX, and X in the
brain	stem
of th	2- Second, third, and fourth sacral segments e spinal cord (S2-S4).
•	Nerve fibers emerge from brain and sacrum craniosacral outflow.
· · · · · · · · · · · · · · · · · · ·	Proceedianic fibere enicinate from
•	Preganglionic fibers originate from cranial nuclei in brain stem (midbrain, pons, medulla) and in sacral segments (S2-S4) (Craniosacral). Parasympathetic ganglia are located on or in the affected organs. Preganglionic neuron has a long axon. Postganglionic neuron has a short axon.

ANS Neurotransmitters

ANS Neurotransmitters: Classified as either cholinergic or adrenergic neurons based upon the neurotransmitter released Adrenergic

Parasympathetic:

- Pre & Postganglionic neurons are Cholinergic
- preganglionic neurons are **always** cholinergic, release Ach which interacts with nicotinic receptors.
- Postganglionic neurons: are cholinergic, release Ach which interacts with muscarinic receptors.



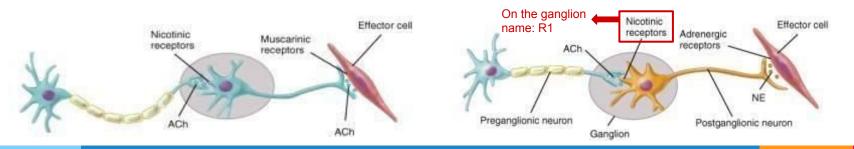
Chemical or neural transmitter:

- All preganglionic fibers release acetylcholine (Ach).
- All parasympathetic postganglionic release Ach.
- All sympathetic postganglionic release noradrenalin except sweat glands & bl vessels to skeletal muscles

Sympathetic:

- Preganglionic neurons are always Cholinergic = (release acetylcholine that interacts with nicotinic receptors on the cell body of postganglionic neurons)
- Postganglionic neurons are adrenergic = (release norepinephrine)
 - Except in thermoregulatory sweat glands (muscarinic, cholinergic)
- Adrenergic neurons affect adrenoreceptors: alpha1 , alpha 2 , beta 1, beta 2

Receptors



There are two types of receptors:

- 1. Adrenoreceptors: a1, a2, β1, β2. Activated by: (adrenaline, noradrenaline)(epinephrine, norepinephrine).
- 2. Cholinoreceptors: nicotinic and muscarinic. Activated by: acetylcholine

Receptors:

- The parasympathetic nervous system uses only acetylcholine (ACh) as its neurotransmitter.
- The ACh acts on two types of receptors, the muscarinic and nicotinic cholinergic receptors.
- Most transmissions occur in two stages: When stimulated, the preganglionic nerve releases ACh at the ganglion, which acts on nicotinic receptors of the postganglionic nerve.
- The postganglionic nerve then releases ACh to stimulate the muscarinic receptors of the target organ.

Adrenoreceptors

- α1 receptor: found in vascular smooth muscle,gastrointestinal (GI) sphincters and bladder, radial muscle of iris:
 >Activation of α1 → 1 contraction.
- **1. β1 receptor**: is found in the following tissues:
 - Sinoatrial (S.A) node f heart rate.
 - Atrioventricular (AV) node in the conduction velocity.
 - •Ventricular muscle main frontractility.
 - Salivary glands a failwary secretions, (enzymes only)
 - >Activation of β 1 ===> excitation.
- 1. β2 receptors: found in vascular smooth muscle wall of bladder, and wall of GI.

> Activation of $\beta 2$ > relaxation.

- β2 more sensitive to Epinephrine than Norepinephrine.

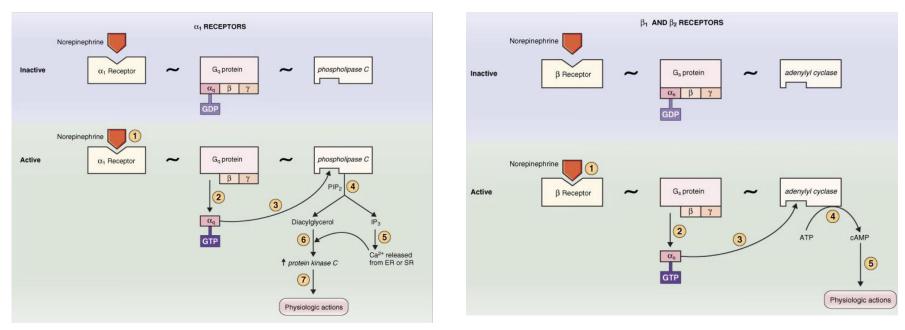
Cholinoreceptors

Nicotinic Receptor (N):

 -an ion channel for Na+ and K+.
 -in all postganglionic neurons,

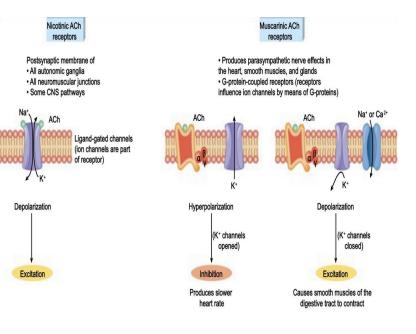
 motor end plate at skeletal muscle and chromaffin cells (of the medulla of the adrenal gland).

1. Muscarinic Receptor (M):


-Works either like 1 adrenoreceptor via DAC, PKC and IP3 or via G protein which has subunit that binds K+ channel and open it.

Adrenoreceptors

This slide was found only in male slides


a₁Receptors

$\beta_1 \& \beta_2$ Receptors

This slide was found only in male slides

Cholinoreceptors

Autonomic Receptors in summary

The type of receptor and its mechanism of action determine the physiologic response: e.g. ß1 receptor in SA node and in ventricular muscle:

SA node: activation of SA node by the agonist (Norepinephrine) in heart rate.
 ventricular muscles in contractility.

Prototypes of Agonists and Antagonists to Autonomic Receptors

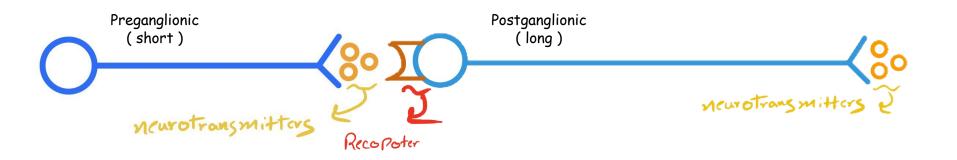
This slide was found only in male slides

Receptor	Agonists	Antagonists	
	Adrenoreceptors		
۵l	Norepinephrine	Phenoxybenza mine	
	Phenylephrine	Prazosin	
a2	Clonidine	Yohimbine	
ßı Norepinephrine		Propranolol	
	Isoproterenol	Metoprolol	
ßź	Epinephrine	Propranolol	
	Isoproterenol	Butoxamine	
	Albuterol		

Receptor	Agonists	Antagonists
	Cholinoreceptors	
Nicotinic	ACh	Curare
	Nicotine Carbachol	Hexamethonium (blocks ganglionic receptor but not neuromuscular junction)
Muscarinic	ACh	Atropine
	Muscarine	
	Carbachol	

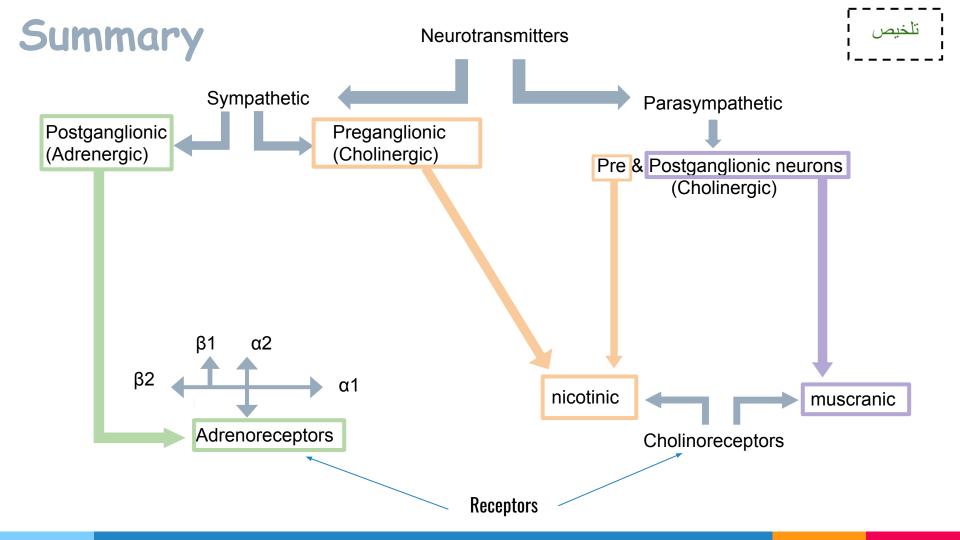
This slide was found only in female slides

The Sympathetic ANS Acts on two types of receptors : a and β . What do the receptors do?


Activation of a receptors leads to smooth muscle contraction.

> Activation of β_2 receptors leads to smooth muscle relaxation.

Activation of β 1 receptors leads to smooth muscle Contraction (especially in heart).



رسمه شرح على ال Sympathetic

* U Recopoter b Im allen b ling

Sympathetic and Parasympathetic Tone

The role of them is to keep the stimulated organs in normal stage.

• Examples:

1. sympathetic always keeps the blood vessel constriction $\frac{1}{2}$ of its normal diameter.

2. removal of vagus nerve > atony> loss of peristalsis (loss of muscle strength).

 e.g., loss of smooth muscle contraction in small intestine constipation. Effect of loss of sympathetic and parasympathetic tone after denervation

Note:

loss of sympathetic tone in blood vessel causes severe vasodilation but after sometime, intrinsic tone increases by chemical adaptation.

Function of Adrenal Gland

Stimulation of sympathetic nerves causes large quantities of Epinephrine and Norepinephrine to be secreted in blood from adrenal gland.

• The effect of Epinephrine & Norepinephrine lasts 5-10 times more than the ones which secreted from sympathetic.

Examples of The Effects of Sympathetic and Parasympathetic stimulation on specific organs

The Eyes	 Sympathetic stimulation contracts the meridional fibers of the iris to dilate the pupil. Parasympathetic stimulation contracts the circular muscle of the iris to constrict the pupil. Focusing of the lens is controlled by parasympathetic through contraction of ciliary muscle. 	
The Glands	 Controlled by parasympathetic → 1 their secretions. Sympathetic causes vasoconstriction of the blood vessels to the glands which causes reduction in their secretion. Sweat glands secretion : increased by sympathetic stimulation. 	
(GI)	 Enteric nervous system Parasympathetic nervous system increases the activity of GI tract (increases peristaltic contraction, and 	
The Gastrointestinal tract	sphincter relaxation).Sympathetic decreases the activity of GI.	
The Heart	 Sympathetic stimulation — 1 activity of the heart. Parasympathetic stimulation doing the opposite. 	
Systemic Blood Vessels	• No affact of the paragympathatic except in centain areas, such as bluching of the face	
Arterial Pressure	 Sympathetic stimulation — I the cardiac output and I resistance to the blood flow and blood pressure. Parasympathetic — I cardiac output and has no effect on blood vessels. 	

Autonomic Reflexes

Most of the visceral functions of the body are regulated by autonomic reflexes.

Cardiovascular:

- baroreceptor reflex: It is a stretch reflex in the main arteries such as carotid artery to detect the blood pressure.

Gastrointestinal:

The receptors in the nose and mouth send a signal to parasympathetic to notify the glands of mouth & stomach to secrete the digestive juices.

Urinary Bladder:

Initiate the urination by parasympathetic innervations.
Sexual reflexes: erection by parasympathetic, ejaculation by sympathetic.

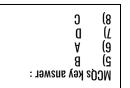
Sympathetic activation could occur in isolated portions such as:

- heart regulation.

- many sympathetic reflexes that regulate G.I. functions.

The parasympathetic usually causes specific localized responses:

- The effect of parasympathetic usually specifies to certain organ, but sometimes there is a common effect of parasympathetic activity by affecting the functions of some organs together such as rectal emptying and bladder emptying, salivary secretion and gastric secretion.



MCOs

<u>MCQs</u>				<u>saq</u>
Q1: Somatic nervous system c	onsists of a single and s	keletal muscle fibers.		<i>Q1:</i> Parasympathetic ganglia are located on?
A) Motoneuron	B) Ganglia	C)Preganglionic	D) Postganglionic	<i>Q2:</i> How many types of
Q2: ANS is activated by				receptors & what are they ?
A) Centers in spinal cord	B) brain stem	C) Hypothalamus	D) All answers	
Q3: ANS is operated by			A (5 A (4	
A) Visceral reflex	B) Midbrain	C) Medulla	D) None	3) A 3) A 3) A
Q4: Sympathetic nervou	s system is regulated by	neurons in the part on t	the hypothalamus.	Adrenoreceptors & Cholinoreceptors
A) Posterior	B) Anterior	C) Latral	D) None	2) there are two types :
				: Yey answer key : A) Attected organs

Q5: Pre & Postganglionic neurons in parasympathetic are?				
A)	nicotinic	B) Cholinergic	C) muscarinic	D) adrenergic
Q6: The receptor in sympathetic NS which is responsible of smooth muscle contraction is?				
A)	α1	B) β1	C) α2	D) β2
Q7: Postganglionic neurons in sympathetic are?				
A)	Cholinergic	B) muscarinic	C) nicotinic	D) adrenergic
Q8: β2 more sensitive to				
A)	Adrenergic - nicotinic	B) Nor-epinephrine - Epinephrine	C) Epinephrine - Nor-epinephrine.	D) α2 - Cholinergic

Thank You

Team members:

⊳	عبد العزيز السحيم
⊳	ماجد العسكر
\triangleright	مشعل الثنيان
⊳	عبد العزيز الربيعة
⊳	باسل فقيها
⊳	محمد بياري
⊳	محمد السلمان
⊳	عبد الرحمن الدويش
⊳	مرشد الحربي

نيب الخطيب ⊲	4
--------------	---

- نايف الشهري <
- فيصل العمري ⊲
- عبد العزيز الغليقة

-	
⊳	نورة الشثري
⊳	سارة القحطاني
⊳	ريناد الحميدي
⊳	ياسمين القرني
⊳	يارا الزهراني
⊳	لمى الأحمدي
⊳	ألاء السلمي
⊳	سارة العيدروس
⊳	يدور الميارك
⊳	فرح البكر

حصة العليان

سمه الذير

⊳⊳

سارة العبيد <

