MUSCULOSKELETAL BLOCK

CREATINE METABOLISM AND COLLAGEN DISEASES

DR ESSA SABI

OBJECTIVES

By the end of this lecture the First Year students will be able to:

- Study the importance of creatine in muscle as a storage form of energy
- Understand the biosynthesis of creatine
- Study the process of creatine degradation and formation of creatinine as an end product
- Understand the clinical importance of creatinine as a sensitive indicator of kidney function
- Study the structure, function, types, and biosynthesis of collagen
- Understand different diseases associated with collagen

CREATINE METABOLISM

Figure 21.16 Synthesis of creatine.

CREATINE BIOSYNTHESIS

Three amino acids are required:

- Glycine
- Arginine
- Methionine (as s-Adenosylmethionine)

Sites of biosynthesis: • Step 1: Kidneys • Step 2: Liver

CREATINE BIOSYNTHESIS

DISTRIBUTION OF BODY CREATINE

- Transported from liver to other tissues
- 98% present in skeletal and heart muscles
- In skeletal muscle it is converted to highenergy source creatine phosphate (phosphocreatine)

CREATINE PHOSPHATE

- A high-energy phosphate compound
- Acts as a storage form of energy in the muscle
- Provides small but, ready source of energy during first few seconds of intense muscular contraction
- The amount of creatine phosphate in the body is proportional to the muscle mass

CREATINE DEGRADATION

- Creatine and creatine phosphate spontaneously form creatinine as an end product
- Creatinine is excreted in the urine
- Serum creatinine is a sensitive indicator of kidney disease (kidney function test)
- Serum creatinine increases with the impairment of kidney function

CREATINE DEGRADATION

URINARY CREATININE

- A typical male excretes about 15 mmol creatinine/day
- Decrease in muscle mass (in muscular dystrophy, paralysis) leads to decreased level of urinary creatinine
- The amount of creatinine in urine is used as an indicator for the proper collection of 24 hours urine sample

CREATINE KINASE (CK)

 CK is responsible for generation of energy in contractile muscular tissues

 CK levels change in cardiac and skeletal muscle disorders

COLLAGEN

- Most abundant protein in the human body
- Collagen is a highly stable molecule with a half-life as long as several years
- A fibrous protein that serves structural functions
- Part of connective tissues, bone, teeth, cartilage, tendons, skin, blood vessels
- It has a long rigid structure

COLLAGEN STRUCTURE

- Collagen α-chain (~1,000 amino acids long) is rich in proline and glycine
- The glycine residues are part of a repeating sequence:
- -Gly-<mark>X</mark>-Y-,
- X = Frequently proline
- Y = Often hydroxyproline
- (-Gly-Pro-Hyp)₃₃₃
- (Y can be also hydroxylysine)

COLLAGEN STRUCTURE

• Collagen consists of three α -chains wound around one another in a rope-like triple helix

• The three polypeptide chains are held together by hydrogen bonds

• Two examples of protein secondary structure: collagen helix and α -helix

COLLAGEN STRUCTURE

- Rich in proline and glycine amino acids
- Proline prevents collagen chains to form α -helix because:
 - Proline has no back bone amino group (it is a ring structure with secondary amino group)
 - Therefore hydrogen bonding within the helix is not possible

NON-STANDARD AMINO ACIDS IN COLLAGEN

- Proline and lysine are converted to:
 - Hydroxyproline and Hydroxylysine
 - By hydroxylase enzymes
 - During post-translational modifications
- The enzyme requires vitamin C for its function

TYPES OF COLLAGEN

- Types of collagen depend on function
- Variations in the amino acid sequence of α-chains result in different properties

Examples:

- Type I: (α1)₂ α₂
- Type II: $(\alpha 1)_3$

TYPE	TISSUE DISTRIBUTION
	Fibril-forming
Ι	Skin, bone, tendon, blood vessels, cornea
Π	Cartilage, intervertebral disk, vitreous body
Ш	Blood vessels, skin, muscle
	Ne two rk-forming
IV	Basement membrane
VIII	Corneal and vascular endothelium
	Fibril-associated
IX	Cartilage
XII	Tendon, ligaments, some other tissues

BIOSYNTHESIS OF COLLAGEN

- Synthesized in fibroblasts, osteoblasts, chondroblasts
 - Pre-pro \rightarrow Pro \rightarrow Mature collagen
- Polypeptide precursors are enzymatically modified to form triple helix
- Hydroxylation of proline and lysine residues
- Glycosylation of some hydroxylysine residues with glucose or galactose

BIOSYNTHESIS OF COLLAGEN

- Secreted from Golgi vacoules into the extracellular matrix as procollagen
- Cleaved by N- and C- procollagen peptidases to release triple helical tropocollagen molecules
- Tropocollagen molecules spontaneously associate to form collagen fibrils

CROSSLINKING OF COLLAGEN FIBRILS

- Lysyl oxidase oxidatively deaminates some of the lysine and hydroxylysine residues in collagen
- The reactive aldehydes allysine and hydroxyallysine condense with lysine or hydroxylysine residues in neighbouring collagen molecules to form covalent cross-links
- This produces mature collagen fibres

Copyright @ 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins

Acquired disease:

Scurvy due to vitamin C deficiency

Geneticlly inherited diseases:

- Ehlers-Danlos syndromes (EDS)
- Osteogenesis imperfecta (OI)

Ehlers-Danlos syndrome

- Due to deficiency of lysyl hydroxylase or N-procollagen peptidase
- Mutations in the amino acid sequences of collagen I, III and V
- Characterized by hyperextensibility of joints and skin

Osteogenesis imperfecta (brittle bone disease):

- Bones fracture easily with minor or no trauma
- Mutations replace glycine with amino acids having bulky side chains preventing the formation of triple helical conformation
 - Type I (most common) characterized by mild bone fragility, hearing loss and blue sclerae

Osteogenesis imperfecta (brittle bone disease):

- Type II (most severe) and lethal in the perinatal period (fractures *in utero*)
- Type III (severe form)
- Fractures at birth, short stature, spinal curvature
- Leading to a humped back (kyphotic) appearance and blue sclerae

REFERENCES

 Lippincott's Illustrated Reviews, Biochemistry, 6th edition, Denise R. Ferrier, Lippincott Williams & Wilkins, USA, pp. 43-49 and 287-288.

 Bishop's Clinical Chemistry 6th edition, pp. 223-227.