ANTICHOLINERGIC DRUGS

Prof. Hanan Hagar

Pharmacology Unit

Medical College

King Saud University

What students should know:

Student should be able to :

- Identify the classification of anticholinergic drugs
- •Describe pharmacokinetics and dynamics of muscarinic antagonists
- Identify the effects of atropine on the major organ systems.
- list the clinical uses of muscarinic antagonists.
- know adverse effects & contraindications of anticholinergic drugs.
- Identify at least one antimuscarinic agent for each of the following special uses: mydriasis, cyclopedia, peptic ulcer & parkinsonism.

ANTICHOLINERGIC DRUGS

Antimuscarinic Drugs

According to source

oAtropine (Hyoscyamine)o Hyoscine (scopolamine)

Semisynthetic

Natural

Antimuscarinics Muscarinic antagonists

Semisynthetic & Synthetic atropine substitutes Homatropine (semisynthetic) **Tropicamaide** Benztropine **Pirenzepine Ipratropium** Glycopyrrolate **Oxybutynin**, Darifenacin

ANTICHOLINERGIC DRUGS

Antimuscarinic Drugs

According to structure

Tertiary amines

Atropine (Hyoscyamine)
Hyoscine (scopolamine)
lipid soluble

Quaternary ammonium

o Glycopyrrolateo Ipratropium

Antimuscarinic Drugs

According to selectivity

Non-selective

Atropine, HyoscineIpratropium

o Pirenzepine(M1)o Darifenacin(M3)

MECHANISM OF ACTION

Reversible competitive blockade of muscarinic Receptors (reverses muscarinic effects of cholinergic drugs).

Atropine & hyoscine can block all muscarinic

receptors (not selective).

PHARMACOKINETICS

Natural alkaloids

- Atropine (Hyoscyamine)
- Hyoscine (scopolamine)
- o Lipid soluble
- o Good oral absorption
- o Good distribution

Cross blood brain barrier (have CNS actions)

PHARMACODYNAMIC ACTIONS

Cholinergic actions	Anticholinergic actions
Eye Circular muscle of iris Contraction (miosis) Ciliary muscles Contraction accommodation for near vision	relaxation (mydriasis) relaxation (cycloplegia) loss of accommodation
Heart bradycardia (H.R.)	Tachycardia (🕇 H.R)
Urinary bladder Contraction of muscles Relaxation of sphincter Urination	Relaxation of muscles contraction of sphincter Urinary retention

PHARMACODY	/NAMIC	ACTIONS
------------	--------	---------

Cholinergic drugs	Anticholinergic drugs
Exocrine glands	
Increase of sweat, saliva,	Decrease all secretions
lacrimal, bronchial,	
intestinal secretions	
GIT	🖌 peristalsis
peristalsis	L secretion
relaxation of sphincter	Contraction of sphincter
Diarrhea	constipation
Lung	
Bronchoconstriction	Bronchodilatation
bronchial secretion	Decrease secretion

PHARMACODYNAMIC ACTIONS

CNS:

- Atropine at clinical dose, initial stimulation followed by depression (sedative effect).
- o Hyoscine →sedative effect
- Antiemetic effect (block vomiting center).
- Antiparkinsonian effect (block basal ganglia).

•Passive mydriasis

due to paralysis of circular muscle

•Cycloplegia (loss of near accommodation)

due to paralysis of ciliary muscle.

•Loss of light reflex.

Increase I.O.P # glaucoma.

 $_{\circ}\downarrow$ Lacrimal secretion \rightarrow Dry & sandy eye

Atropine causes *initial bradycardia* followed by *tachycardia* due to blockade of M2-receptors on SA node.
↑ AV conduction (+ ve dromotropic effect).
↓ Vasodilatation induced by cholinergic agonists.
• Toxic dose: Cutaneous vasodilatation → (atropine flush)

Respiratory system

 Relaxation of bronchial muscles (bronchodilators)

 \downarrow Bronchial secretion $\rightarrow \uparrow$ viscosity

- Dryness of mouth
- \downarrow Gastric acid secretion
- Relaxation of smooth muscles.
- \downarrow GIT motility → Antispasmodic effect.
- ↑ Sphincter contractions
- Constipation

Genitourinary tract:

- Relaxation of smooth muscles of urinary bladder.
- Sphincter contraction.
- Urinary retention.
- **# Contraindicated** in old men with prostatic hyperplasia.

Secretions

- \downarrow Salivary secretion \rightarrow (Dry mouth).
- \downarrow Sweating \rightarrow dry skin
- In children modest doses → "atropine fever"
 ↓ Bronchial secretion → ↑ Viscosity
- \downarrow Lacrimal secretion \rightarrow Sandy eye

CLINICAL USES

- Parkinsonism
- Vomiting (Motion sickness)
- Pre-anesthetic medication
- Asthma & COPD
- Peptic ulcer
- Intestinal spasm as antispasmodics
- Urinary urgency, urinary incontinence

CLINICAL USES

CNS:

Parkinsonism e.g. Benztropine

- C, Drug therapy in Parkinson's disease is aimed at correcting the imbalance between acetylcholine and dopamine. This can be accomplished by either
 - 1. increasing the supply of dopamine or
 - blocking or lowering acetylcholine levels.

CLINICAL USES

Motion sickness e.g. Hyoscine

Ophthalmic disorders:

Ophthalmoscopic examination of retina

e.g. Tropicamide, homatropine

e.g. Glycopyrrolate, Hyocine butyl bromide.

- Intestinal spasm
- Biliary and renal colics.
- oIrritable bowel syndrome

o Atropine + diphenoxylate

used for treatment of Traveler's diarrhea with opioid

Urinary incontinence & Urinary urgency caused by minor inflammatory bladder disorders

- e.g. Oxybutynin
- e.g. Darifenacin

Respiratory disorders:

e.g. Ipratropium (inhalation)

- a nonselective muscarinic antagonist
- Can not cross BBB
- Bronchial asthma & chronic obstructive pulmonary disease (COPD)
- No systemic side effects.

Lung with COPD

Brorichioles lose their shape and become clogged with mucous

Walls of alveoli are destroyed, forming fewer larger alveoli

* Jewim

Ipratropium Bromide Aerosol BP Ipratropium Bromide BP Omco per dose

Cardiovascular uses:

Sinus bradycardia

atropine IV/IM Used to increase heart rate through vagolytic effects, causing increase in cardiac output.

Cholinergic poisoning

Cholinesterase inhibitors "insecticides". Mushroom poisoning.

Atropine reverses muscarinic effects of cholinergic poisoning.

ADVERSE EFFECTS

- Confusion, agitation, delirium
 Mydriasis, blurred vision
 Dry mouth , hot flushed skin
 Tachycardia
 Palpitation
 Constipation, urinary retention
- o Skin flushing
- ↑ Body temperature (hyperthermia).

Uses of antimuscarinic drugs

Drugs	organ	Uses
Atropine	CNS	Pre-anesthetic medication Antispasmodic
Hyoscine	CNS	Pre-anesthetic medication, Motion sickness, antispasmodic
Benztropine	CNS	Parkinson's disease
Homatropine Tropicamide	Eye	Fundus examination
Ipratropium	Respiratory system	asthma, COPD, inhalation
Pirenzepine	Stomach	Peptic ulcer
Glycopyyrolate	GIT	Antispasmodics in hypermotility
Oxybutynin Darifenacin	UT	Urinary urgency, Urinary incontinence

CONTRA-INDICATIONS

- **Glaucoma** (acute angle-closure glaucoma)
- **Tachycardia** secondary to thyrotoxicosis or cardiac insufficiency
- Old patients with prostate hypertrophy.
- Paralytic ileus
- Constipation
- Children in case of atropine.

SUMMARY

- Antimuscarinics reverse action of cholinomimetics on muscarinic receptors.
- Are useful in many applications including intestinal spasm, urinary urgency, vomiting, parkinsonism, asthma and peptic ulcer.
- Are contraindicated in constipation, Prostate hypertrophy, tachycardia and glaucoma.

Quiz 1?

- A patient is brought into the emergency room. Upon examination you find the following: a high fever, rapid pulse, no bowel sounds and dilated pupils that do not respond to light. His lungs are clear. His face is flushed and his skin is dry. He is confused, disorientated and reports 'seeing monsters'. Based on these symptoms, you suspect he has been 'poisoned'. Which of the following, is the MOST obvious cause of poisoning?
 A. Neostigmine
- B. Physostigmine
 - C. Atropine sulfate
- D. Acetylcholine

Quiz 2?

- A. The patient is complaining of extreme thirst.
- B. The patient complains he is unable to clearly see the clock located just across from him.
 - C. The patient's heart rate is elevated.
 - D. The patient reports he has cramping and diarrhea.

Can antimuscarinic drugs reverse the Action of neostigmine on skeletal muscles?

What is the antidote that can be used in atropine toxicity?

Thank you

Questions ?