LECTURE-4 GAS EXCHANGE

Dr. Maha Saja
Msaja@ksu.edu.sa
Office no. 8 level 3

Let's summarize what have been discussed so far!

Four processes help respiration achieve its goal... What are they?

In the past 3-4 lectures we discussed the $1^{\text {st }}$ step Pulmonary ventilation

Let's revise what we know!

Mechanism of Ventilation

Inspiration

Expiration

Under normal resting conditions,

How much air moves in or $\mathbf{5 0 0} \mathbf{~ m l}$ out of the lung during this process (ventilation)? What is it called? Tidal volume

Is the tidal volume the only volume of air that can be breathed in or out of the lungs?

What happens to the TV when it enters the respiratory passages?

What happens to the TV when it enters the respiratory passages?

Source: Levitzky MG: Pulmonary Physiology, Eighth Edition:
www.accessmedicine.com
Copyright (c) The McGraw-Hill Companies, Inc. All rights reserved.

What are the Partial Pressures of $\mathbf{O}_{\mathbf{2}} \& \mathbf{C O}_{\mathbf{2}}$ in Inspired \& Expired Air?

- $1^{\text {st }}$ we define pressure.
- Pressure is force exerted by a fluid (gas/liquid) per unit area.

$$
P=\frac{F}{A}
$$

- Atmospheric pressure = the force per unit area exerted by the weight of the atmosphere $=760 \mathrm{mmHg}=1 \mathrm{~atm}$ (at sea level).
- Atmospheric dry air is a gas mixture composed of;
- $\mathrm{N}_{2}=78.06 \%$
- $\mathrm{O}_{2}=20.98 \% \approx 21 \%$
- $\mathrm{CO}_{2}=0.04 \%$

Partial Pressures of Gases

- In a gas mixture, the pressure exerted by any one gas in the mixture is equal to the total pressure of all gases in the mixture X the fractional concentration of that gas in the mixture = Partial pressure (P)
- $\mathrm{PO}_{2}=760 \mathrm{mmHg} \times 21 \% \approx 160 \mathrm{mmHg}$.
- Can you calculate the $P N_{2}$ and $P C O_{2}$ at sea level?

What Happens to PO_{2} and PCO_{2} as Inspired Air Passes Through the Respiratory Tract?

Atmospheric air
$\mathrm{PO}_{2}=160 \mathrm{mmHg}$
$\mathrm{PCO}_{2}=0.3 \mathrm{mmHg}$

Air gets humidified as it passes through the airways

Humidified air $\mathrm{PO}_{2}=150 \mathrm{mmHg}$ $\mathrm{PCO}_{2}=0.3 \mathrm{mmHg}$

If you know that water vapour pressure at $37^{\circ} \mathrm{C}$ is $\mathrm{PH}_{2} \mathrm{O}=47 \mathrm{mmHg}$, what would happen to PO_{2} and PCO_{2} flowing in?

The 350 ml of TV that reaches the alveoli mixes with the air present there (FRC)

Alveolar air
$\mathrm{PO}_{2}=104 \mathrm{mmHg}$
$\mathrm{PCO}_{2}=40 \mathrm{mmHg}$

What are the factors affecting alveolar PO_{2} and PCO_{2} ?

Factors Affecting Alveolar $\mathbf{P O}_{\mathbf{2}}$ and PCO_{2}

1. Rate of alveolar ventilation

2. Rate of absorption of O_{2} or excretion of CO_{2}

At rest, 250 ml of O_{2} are extracted by tissues at ventilatory rate of $4.2 \mathrm{~L} / \mathrm{min}$.

At rest, 200 ml of CO_{2} are excreted by tissues at ventilatory rate of $4.2 \mathrm{~L} / \mathrm{min}$.

Summary

Table 39-1

Partial Pressures of Respiratory Gases as They Enter and Leave the Lungs (at Sea Level)

	Atmospheric Air* (mm Hg)		Humidified Air (mm Hg)		Alveolar Air (mm Hg)		Expired Air (mm Hg)	
N_{2}	597.0	(78.62\%)	563.4	(74.09\%)	569.0	(74.9\%)	566.0	(74.5\%)
O_{2}	159.0	(20.84\%)	149.3	(19.67\%)	104.0	(13.6\%)	120.0	(15.7\%)
CO_{2}	0.3	(0.04\%)	0.3	(0.04\%)	40.0	(5.3\%)	27.0	(3.6\%)
$\mathrm{H}_{2} \mathrm{O}$	3.7	(0.50\%)	47.0	(6.20\%)	47.0	(6.2\%)	47.0	(6.2\%)
TOTAL	760.0	(100.0\%)	760.0	(100.0\%)	760.0	(100.0\%)	760.0	(100.0\%)

[^0]
Ventilation is done and air has reached the alveoli

What's next?

Gas Diffusion from alveoli into the blood

GAS EXCHANGE \& GAS TRANSFER

Objectives

- Define partial pressure of a gas, how is influenced by altitude.
- Understand that the pressure exerted by each gas in a mixture of gases is independent of the pressure exerted by the other gases (Dalton's Law)
- Understand that gases in a liquid diffuse from higher partial pressure to lower partial pressure (Henry's Law)
- Describe the factors that determine the concentration of a gas in a liquid.
- Describe the components of the alveolar-capillary membrane (i.e., what does a molecule of gas pass through).
- Identify the various factors determining gas transfer: -
- Surface area, thickness, partial pressure difference, and diffusion coefficient of gas
- State the partial pressures of oxygen and carbon dioxide in the atmosphere, alveolar gas, at the end of the pulmonary capillary, in systemic capillaries, and at the beginning of a pulmonary capillary.

The Respiratory Unit

- Respiratory bronchioles + alveolar ducts + alveoli. The site of gas exchange in the lungs.
- There are around 300 million alveoli in humans.
- The total surface area \approx $70 m^{2}$ (area of a tennis court).
- The blood present in the capillary bed at any time = $60-140 \mathrm{ml}$.

The Respiratory Membrane

- For gas to diffuse from alveoli to blood, it should pass through the respiratory membrane.
- What is it made of?

1. Layer of fluid.
2. Alveolar epithelium.
3. Epithelial BM.
4. +/- Thin interstitial space.
5. Endothelial BM.
6. Capillary endothelial membrane.
0.2-0.6 $\mu \mathrm{m}$ thick

Factors Affecting Gas Diffusion Across the Membrane

1. Thickness of the membrane.
2. Membrane surface area.
3. Diffusion coefficient of the gas.

- Depends on: gas solubility and square root of the MW.

4. Partial pressure difference of the gas between the two sides of the membrane.

$$
D \alpha \frac{\Delta P \times A x S}{d x \sqrt{M W}}
$$

What Determines the Partial Pressure of a Gas in a Liquid (Blood)

- According to Henry's law;

$$
\text { Partial Pressure }=\frac{\text { Concentration of dissolved gas }}{\text { Solubility coefficient }}
$$

- When a molecule has high solubility, far more can be dissolved without building up excess partial pressure within a solution.

Oxygen
Carbon dioxide
Carbon monoxide
Nitrogen
Helium

0.024

0.57
0.018
0.012
0.008

The solubility coefficient of different gases.
What do you notice?

Diffusion of Oxygen

Exhaled air

Mixed venous blood
$\mathrm{PO}_{2}=40$ $\mathrm{PcO}_{2}=46$

Inhaled air

Diffusion of O_{2} from alveoli to pulmonary capillaries

Capillary
 blood

Diffusion of $\mathrm{O}_{\mathbf{2}}$ from tissue

 capillaries to tissuesOxygenated

$$
\begin{aligned}
& \mathrm{PO}_{2}=100 \\
& \mathrm{PcO}_{2}=40
\end{aligned}
$$

Figure 40-3

Diffusion of oxygen from a tissue capillary to the cells. $\left(\mathrm{PO}_{2}\right.$ in interstitial fluid $=40 \mathrm{~mm} \mathrm{Hg}$, and in tissue cells $=23 \mathrm{~mm} \mathrm{Hg}$.)

Diffusion of Carbon Dioxide

Figure 40-5
Uptake of carbon dioxide by the blood in the tissue capillaries. (PCO_{2} in tissue cells $=46 \mathrm{mmHg}$, and in interstitial fluid = 45 mm Hg .)

Diffusion of CO_{2} from tissues to tissue capillaries

Figure 40-1

Uptake of oxygen by the pulmonary capillary blood. (The curve in this figure was constructed from data in Milhorn HT Jr, Pulley PE Jr: A theoretical study of pulmonary capillary gas exchange and venous admixture. Biophys J 8:337, 1968.)

Figure 40-6

Diffusion of carbon dioxide from the pulmonary blood into the alveolus. (This curve was constructed from data in Milhorn HT Jr, Pulley PE Jr: A theoretical study of pulmonary capillary gas exchange and venous admixture. Biophys $J 8: 337$, 1968.)

Summary

Figure 35-1.

Copyright e2006 by The McGraw-Hill Companies, Inc. All rights reserved.
Summary of PO_{2} and PCO_{2} values in air, lungs, blood, and tissues, graphed to emphasize the fact that both O_{2} and CO_{2} diffuse "downhill" along gradients of decreasing partial pressure. (Redrawn and reproduced, with permission, from Kinney JM: Transport of carbon dioxide in blood. Anesthesiology 1960;21:615.)

Dr.Aida Korish (akorish@ksu.edu.sa)

Thank you

[^0]: * On an average cool, clear day.

