

LECTURE-4 GAS EXCHANGE

Dr. Maha Saja

Msaja@ksu.edu.sa

Office no. 8 level 3

Let's summarize what have been discussed so far!

What is the aim of respiration?

Four processes help respiration achieve its goal... What are they?

In the past 3-4 lectures we discussed the 1st step Pulmonary ventilation

Let's revise what we know!

Mechanism of Ventilation

Inspiration

Expiration

Under normal resting conditions,

How much air moves in or out of the lung during this process (ventilation)?	500 ml
What is it called?	Tidal volume

Is the tidal volume the only volume of air that can be breathed in or out of the lungs?

What happens to the TV when it enters the respiratory passages?

Maha Saja

What happens to the TV when it enters the respiratory passages?

Source: Levitzky MG: Pulmonary Physiology, Eighth Edition: www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

What are the Partial Pressures of O₂ & CO₂ in Inspired & Expired Air?

- 1st we define pressure.
- **Pressure** is force exerted by a fluid (gas/liquid) per unit area.

$$P = \frac{F}{A}$$

- Atmospheric pressure = the force per unit area exerted by the weight of the atmosphere = 760 mmHg = 1 atm (at sea level).
- Atmospheric dry air is a gas mixture composed of;
 - N₂ = 78.06%
 - O₂ = 20.98% ≈ 21%
 - $CO_2 = 0.04\%$

Partial Pressures of Gases

- In a gas mixture, the pressure exerted by any one gas in the mixture is equal to the total pressure of all gases in the mixture X the fractional concentration of that gas in the mixture = *Partial pressure* (P)
- PO₂ = 760 mmHg X 21% ≈ 160 mmHg.
- Can you calculate the PN₂ and PCO₂ at sea level?

What Happens to PO₂ and PCO₂ as Inspired Air Passes Through the Respiratory Tract?

Factors Affecting Alveolar PO₂ and PCO₂

1. Rate of alveolar ventilation

2. Rate of absorption of O_2 or excretion of CO_2

At rest, 250ml of O_2 are extracted by tissues at ventilatory rate of 4.2 L/min.

At rest, 200ml of **CO**₂ are excreted by tissues at ventilatory rate of 4.2 L/min.

Table 39-1

Partial Pressures of Respiratory Gases as They Enter and Leave the Lungs (at Sea Level)

	Atmospheric Air* (mm Hg)		Humidified Air (mm Hg)		Alveolar Air (mm Hg)		Expired Air (mm Hg)	
N ₂	597.0	(78.62%)	563.4	(74.09%)	569.0	(74.9%)	566.0	(74.5%)
$\overline{O_2}$	159.0	(20.84%)	149.3	(19.67%)	104.0	(13.6%)	120.0	(15.7%)
\overline{CO}_2	0.3	(0.04%)	0.3	(0.04%)	40.0	(5.3%)	27.0	(3.6%)
$H_2\bar{O}$	3.7	(0.50%)	47.0	(6.20%)	47.0	(6.2%)	47.0	(6.2%)
TOTAL	760.0	(100.0%)	760.0	(100.0%)	760.0	(100.0%)	760.0	(100.0%)

* On an average cool, clear day.

How do you explain the readings of expired air?!!!

Ventilation is done and air has reached the alveoli

What's next?

Gas Diffusion from alveoli into the blood

GAS EXCHANGE & GAS TRANSFER

Objectives

- Define partial pressure of a gas, how is influenced by altitude.
- Understand that the pressure exerted by each gas in a mixture of gases is independent of the pressure exerted by the other gases (Dalton's Law)
- Understand that gases in a liquid diffuse from higher partial pressure to lower partial pressure (Henry's Law)
- Describe the factors that determine the concentration of a gas in a liquid.
- Describe the components of the alveolar-capillary membrane (i.e., what does a molecule of gas pass through).
- Identify the various factors determining gas transfer: -
- Surface area, thickness, partial pressure difference, and diffusion coefficient of gas
- State the partial pressures of oxygen and carbon dioxide in the atmosphere, alveolar gas, at the end of the pulmonary capillary, in systemic capillaries, and at the beginning of a pulmonary capillary.

The Respiratory Unit

- Respiratory bronchioles + alveolar ducts + alveoli. The site of gas exchange in the lungs.
- There are around 300 million alveoli in humans.
- The total surface area ≈ 70m² (area of a tennis court).
- The blood present in the capillary bed at any time = 60-140ml.

The Respiratory Membrane

- For gas to diffuse from alveoli to blood, it should pass through the respiratory membrane.
- What is it made of?

- Layer of fluid. 1.
- Alveolar epithelium. 2.
- 3. Epithelial BM.
- +/- Thin interstitial 4 space.
- Endothelial BM. 5.
- Capillary endothelial 6. membrane.

0.2-0.6 µm thick

Capillary

Factors Affecting Gas Diffusion Across the Membrane

- 1. Thickness of the membrane.
- 2. Membrane surface area.
- 3. Diffusion coefficient of the gas.
 - Depends on: gas solubility and square root of the MW.
- 4. Partial pressure difference of the gas between the two sides of the membrane.

 $D \alpha \frac{\Delta P x A x S}{d x \sqrt{MW}}$

Ultrastructure of the alveolar respiratory membrane, shown in cross section.

What Determines the Partial Pressure of a Gas in a Liquid (Blood)

Carbon dioxide Carbon monoxide Nitrogen Helium 0.024 0.57 0.018 0.012 0.008 The solubility coefficient of different gases. *What do you notice?*

Diffusion of Oxygen Inhaled air Exhaled air CO2 Alveolus Diffusion of O₂ from tissue $Po_2 = 104$ Mixed Oxygenated capillaries to tissues venous blood blood $Pco_{2} = 40$ $Po_2 = 100$ $Po_2 = 40$ CO2 O2 $CO_2 = 46$ $Pco_2 = 40$ Arterial end Venous end 40 mm Hg of capillary of capillary Capillary 0₂ = 95 mm Hg 🕨 23 mm Hg $PO_2 = 40 \text{ mm Hg}$ Diffusion of O₂ from alveoli to pulmonary capillaries Figure 40-3 Diffusion of oxygen from a tissue capillary to the cells. (Po2 in interstitial fluid = 40 mm Hg, and in tissue cells = 23 mm Hg.)

Dr.Aida Korish (akorish@ksu.edu.sa)

Figure 40-1

Uptake of oxygen by the pulmonary capillary blood. (The curve in this figure was constructed from data in Milhorn HT Jr, Pulley PE Jr: A theoretical study of pulmonary capillary gas exchange and venous admixture. Biophys J 8:337, 1968.)

Figure 40-6

Diffusion of carbon dioxide from the pulmonary blood into the alveolus. (This curve was constructed from data in Milhorn HT Jr, Pulley PE Jr: A theoretical study of pulmonary capillary gas exchange and venous admixture. Biophys J 8:337, 1968.)

Figure 35–1.

Summary of PO₂ and PCO₂ values in air, lungs, blood, and tissues, graphed to emphasize the fact that both O₂ and CO₂ diffuse "downhill" along gradients of decreasing partial pressure. (Redrawn and reproduced, with permission, from Kinney JM: Transport of carbon dioxide in blood. Anesthesiology 1960;21:615.)

Dr.Aida Korish (akorish@ksu.edu.sa)

Thank you