ADRENERGIC AGONISTS

Classify adrenergic agonists according to chemical structure, receptor selectivity and mode of action

Discuss pharmacodynamic actions, ADRs, indications and contraindications of adrenergic agonists

ADRENERGIC AGONISTS

ii-According to receptor selectivity

 α_1 ; Phenylephrine

 α_2 ; Clonidine

2-Non-selective

Noradrenaline, adrenaline, dopamine, isoprenaline, ephedrine

 β_1 ; Dobutamine

β₂; Salbutamol

DIRECT-ACTING

ADRENALINE

Naturally released from adrenal medulla
secondary to stress, hunger, fear

Inactivated by intestinal enzymes, so given parenterally or by inhalation

Acts on all adrenergic receptors; $\beta = > \alpha$

Lung \Rightarrow bronchiodilatation (β_2) Pregnant uterus \Rightarrow tocolytic (β_2), Eye \Rightarrow mydriasis (α_1) \clubsuit CNS \Rightarrow little, headache, tremors & restlessness

PHARMACOLOGICAL ACTIONS

Heart + inotropic, chronotropic, dromotropic (\triangle excitability)(β_1)

Vascular SMC:- Constricts skin & peripheral vessels (α_1) . Dilates coronary & skeletal vessels (β_2)

INDICATIONS

Used locally; as haemostatic (in epistaxsis) & as decongestant (α_1)

With local anesthetics
to reduce absorption, toxicity & bleeding from incision

Used systemically for treatment of:-

Allergic reactions → drug of choice in anaphylactic shock as it is the physiological antagonist of histamine → A BP & cause vasoconstricton

In status asthmatics → given parenterally → bronchodilatation (β₂) + →
 ↓ mucosal edema (α₁)

↓ In cardiac arrest → direct but now through central line *N.B.* Selective $β_1$ agonists are preferred

Tachycardia, palpitation, arrhythmias, angina pains

Headache, weakness, tremors anxiety and restlessness.

Hypertension + cerebral hemorrhage and pulmonary edema.

Coldness of extremities, tissue necrosis and gangrene if extravasations

Nasal stuffiness; rebound congestion if used as decongestion

CONTRINDICATIONS

Coronary heart disease, hypertension, peripheral arterial disease.

Closed-angle glaucoma
 (Iris relaxation + filtration angle + A IOP)

NORADRENALINE

It is naturally released from postganglionic adrenergic fibers

Not much used therapeutically - severe vasoconstriction

Acts on $\alpha > \beta_1$

Only administered IV - Not IM or Subcutaneous → necrosis

It ▲ BP [systolic & diastolic]
reflex bradycardia (vagal stimulation)
CO not much changed

NORADRENALINE

INDICATIONS

<u>Used systemically;</u> hypotensive states

In spinal anesthesia, in septic shock if fluid replacement and inotropics fail

Used topically: as a local haemostatic with local anesthetic (< tachycardia & irritability & > necrosis & sloughing)

ISOPRENALINE

It is synthetic ; show no presynaptic uptake nor breakdown by MA O → longer action.

Slightly \uparrow systolic pressure, \downarrow diastolic pressure , \downarrow PVR, \uparrow HR

Acts on $\beta > \alpha$

Produce broncho-dilatation → Was used by inhalation in acute asthma

Used in cardiac arrest but contraindicated in hyperthyroidism & CHD

It is a natural CNS transmitter

Released from postganglionic adrenergic fibers (> renal vessels)

Releases NE from postganglionic adrenergic fibers

Indications

Given parenterally by continuous infusion

It is the drug of choice in treatment of SHOCK → septic, hypovolaemic (after fluid replacement), cardiogenic. It ↑ BP & CO (β_1), without causing renal impairment (D₁)

Can be given in acute heart failure (HF) but dobutamine is prefered

It is preferred because it does not A oxygen demand

SALBUTAMOL

It is synthetic. Given orally, by inhalation or parenteral.

Acts selectively on $\beta_2 \rightarrow$ on bronchi. Little effect on heart (β_1)

Bronchodilater → asthma & chronic obstructive airway disease (COPD)

Because t_{1/2} is 4 hrs longer acting preparations exist ; Salmeterol & Formoterol

Other selective β_2 agonists :

Terbutaline; Bronchodilator & Tocolytic

Ritodrine; Tocolytic → postpone premature labour (labour that begins before the 37th week of gestation)

INDIRECTLY-ACTING SYMPATHOMIMETIC AMINES

AMPHETAMINE

It acts indirectly; Releasing NE from adrenergic nerve endings > Blocking of its reuptake

Because it depletes vesicles from stored NE →tachyphylaxsis

Absorbed orally, not destroyed by MAO, excreted mostly unchanged (*heta by acidification of urine*)

Acts on α $\&\beta$ \Rightarrow similar to epinephrine but has CNS stimulant effects; mental alertness, wakefulness, concentration & selfconfidence / followed by depression & fatigue on continued use

✓ Weight → ✓ appetite ▲ increase energy expenditure

No more used therapeutically + induces psychic & physical dependence and psychosis + the CVS side effects

MIXED SYMPATHOMIMETICS

EPHEDRINE

Plant alkaloid, synthetic, mixed sympathomimetic

Prolonged direct action on receptors **→** receptor down regulation

Release NE from adrenergic nerve endings → depletes stores → tachyphylaxsis

Absorbed orally, not destroyed by MAO or COMT + prolonged action

MIXED SYMPATHOMIMETICS

EPHEDRINE

Acts on α & β

Facilitation of neuromuscular transmission(mythenia gravis) & retention of urine

Has CNS stimulant effects (less than amphetamine)

No more therapeutically used → but is abused by athletes and prohibited during games.

Pseudoephedrine, dual acting < CNS & pressor effects compared to ephedrine. Used as nasal & ocular decongestant & in flue remedies