Treatment of Acute & Chronic Rhinitis and Cough

Learning objectives

At the end of the lecture, students should be able to:

- ▶ Define rhinitis and cough
- Classify drugs used in the treatment of rhinitis
- Expand on the pharmacology of different drug groups used in the treatment as; antihistamines, leukotriene antagonists, corticosteroids, decongestants and anticholinergics.
- ▶ Describe the pharmacology of different expectorants and mucolytics used in the treatment of productive cough
- Describe the pharmacology of antitussives (cough suppressants)

Rhinitis

- ► Rhinitis is the irritation and/or inflammation of the mucous membranes inside the nose
- ► Types:
 - 1. Allergic (seasonal; hay fever and perennial)
 - 2. infectious (infection with bacteria, fungi and viruses)
- □ Rhinitis may be:
- Acute (persist 7-14 days)
- Chronic (persistent more than 6 weeks)

Signs and symptoms of rhinitis:

- Runny nose (rhinorrhea; excess nasal secretion & discharge)
- Sneezing
- Nasal congestion/stuffy blocked nose
- Postnasal drip
- ➤ Systemic effects may be (fever, body aches,...,...

Treatment of Rhinitis

A. Preventive Therapy:

- 1. Environmental control (dust control, pets)
- 2. Allergen immunotherapy

B. Pharmacotherapy:

- 1. Anti-histamines (H₁- receptor antagonists)
- 2. Anti-allergics
 - a) Cromolyn sodium (mast cell stabilizer)
 - b) Montelukast (Leukotriene receptor antagonists)
- 3. Corticosteroids
- 4. Decongestants (alpha- adrenergic agonists)
- 5. Anticholinergics
- 6. Antibiotics (if bacterial infection occur)

What is histamine?

- ► Histamine is a chemical messenger mostly generated in mast cell that mediates a wide range of cellular responses, including
 - allergic and inflammatory reactions,
 - gastric acid secretion and
 - ▶ neurotransmission in parts of the brain
- ► Histamine has no clinical application but antihistamines have important therapeutic applications

Antihistamines (H_I-receptor antagonists):

- ► The term antihistamine, without modifying objective, refers to the classic H₁ - receptor blockers
- ► These drugs do not interfere with the formation or release of histamine
- ► They block the receptor- mediated response of a target tissue

1-ANTIHISTAMINES H₁ receptor blockers

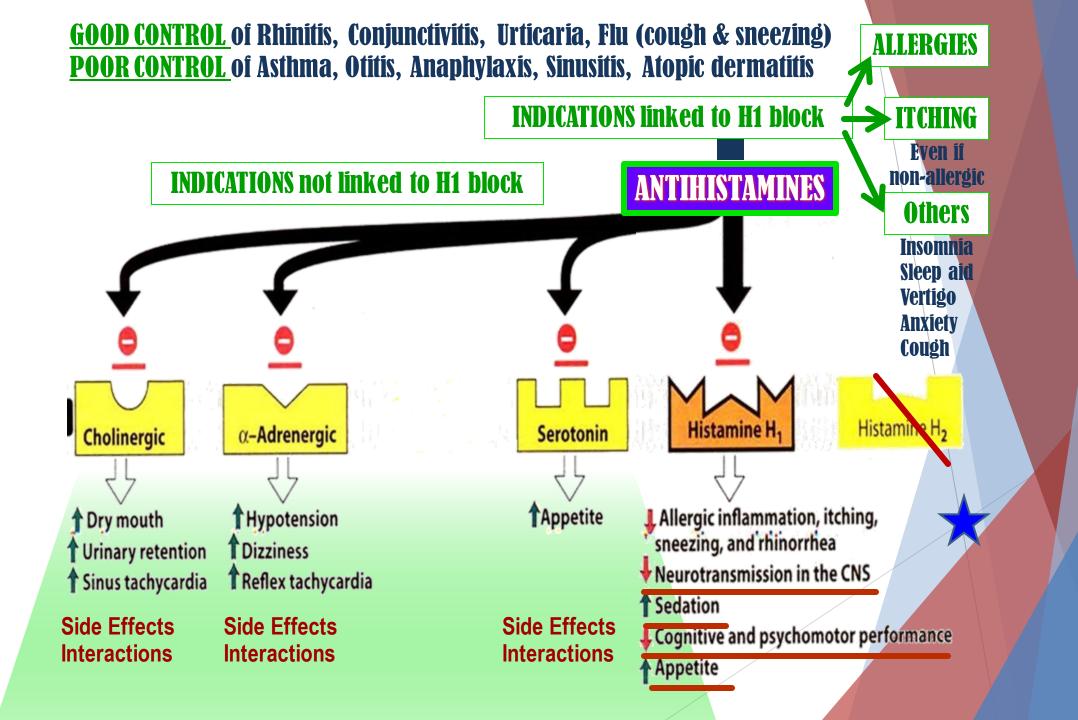
CLASSIFICATION [Chemical / Functional] \rightarrow USES vs ADVERSE EFFECTS

	First GENERATION	Second GENERATION	Third GENERATION
1) ALKYLAMINES	Chlorpheniramine		
2) ETHANOLAMINES	Dimenhydrinate		
	Diphenhydramine		
3) ETHYLENEDIAMINES	Antazoline		
4) PHENOTHIAZINES	Promethazine		
5) PIPERAZINE	Cyclizine	Cetirizine	Levocetirizine
6) PIPERIDINES	Azatidine		Fexofenadine
		Loratadine	Desoloratadine
	Ketotifen		
7) MISCELLANEOUS	Cyproheptadine		

Short duration

Interactions; with enzyme inhibitors [macrolides, antifungals, calcium antagonists] + additive pharmacodynamic ADRs

Longer duration = better control


No drug interactions & minimal ADRs

All are used systemic or topical

- ► The older first generation drugs still widely used because they are effective and inexpensive
- ➤ These drugs penetrate the blood brain barrier (BBB) and cause sedation. Furthermore, they tend to interact with other receptors, producing a variety of unwanted adverse effects
- ▶ Second generation (Non-sedating) agents are specific for H₁ receptors and they carry polar groups, they do not penetrate the BBB causing less CNS depression

Actions:

- ► The action of all the H₁ receptor blocker is qualitatively similar
- They are much more effective in <u>preventing</u> <u>symptoms</u> than reversing them once they have occurred
- ► Most of these drugs have additional effects unrelated to their blocking H1 receptors, which probably reflect binding of H1 antagonists to:
- Cholinergic,
- Adrenergic or,
- Serotonin receptors

Therapeutic uses:

- 1. Allergic rhinitis, relieves rhinorrhea, sneezing, and itching of eyes and nasal mucosa
- 2. Common cold: dries out the nasal mucosa. Often combined with nasal decongestant and analgesics
- 3. Motion sickness
- 4. Allergic dermatoses: can control itching associated with insect bites.
- 5. Nausea and vomiting (Promethazine)

Pharmacokinetics:

- H₁ receptor blockers are well absorbed after oral administration
- ► Maximum serum levels occurring at 1-2 hours
- ► Average plasma half life is 4 to 6 hours
- ► H₁- receptor blockers have high bioavailability and distributed to all tissues including CNS
- ► Metabolized by the hepatic cytochrome P450 system
- Excretion occur via kidney except fexofenadine excreted in feces unchanged

Adverse effects:

► Sedation, tinnitus, fatigue, dizziness blurred vision, dry mouth

Drug interaction:

► CNS depressants & cholinesterase inhibitors

Overdose:

► The most common and dangerous effects of acute poisoning are those on CNS; including hallucinations, excitement, ataxia and convulsions

2-ANTI-ALLERGICS

CROMOLYN & NEDOCROMYL

→ Histamine release [mast cell stabilizer by inhibiting CI channels] i.e. can act only prophylactic; it does not antagonize the released histamine

Used more in children for prophylaxis of perennial allergic rhinitis

Should be given on daily base and never stop abruptly.

Montelukast LEUKOTRIENE RECEPTOR ANTAGONISTS

Block leukotriene actions

For **prophylaxis** of lower respiratory [i.e perennial allergen, exercise or aspirin-induced asthma] > upper respiratory allergies [chronic rhinosinusitis] ADRs; as in asthma

3-CORTICOSTERIODS

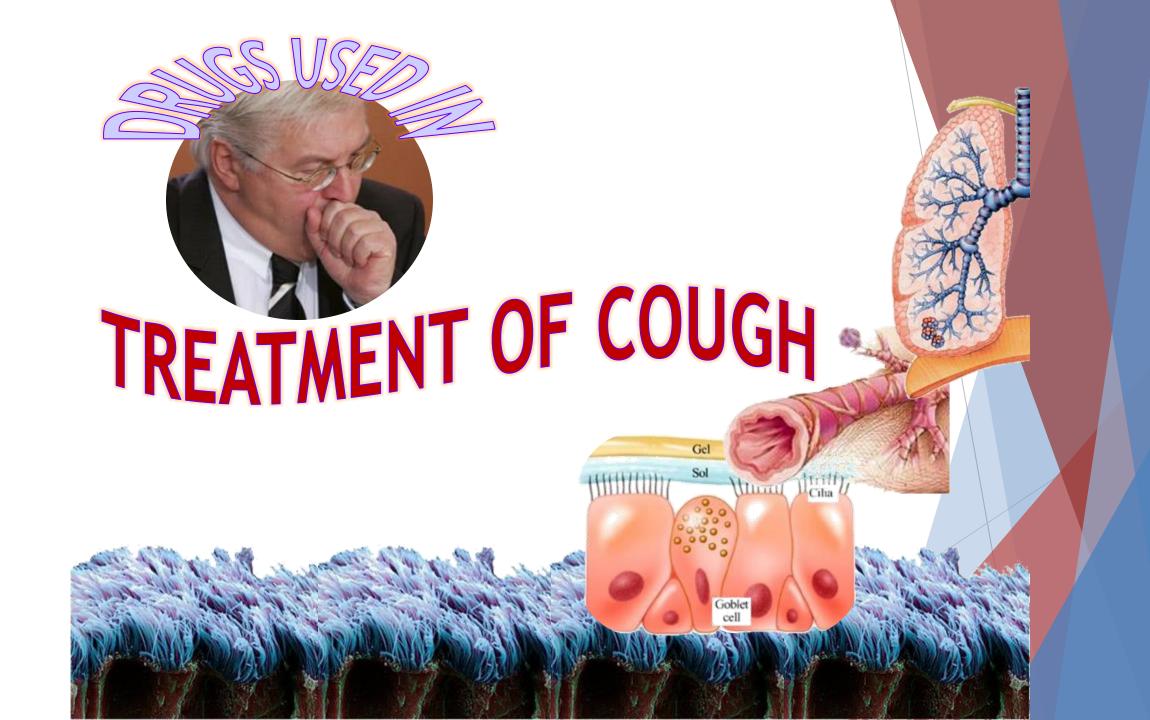
Anti-inflammatory \rightarrow blocks phospholipase $A_2 \rightarrow$ \rightarrow arachedonic a. synthesis \rightarrow \rightarrow prostaglandins & leukotrienes

Topical (inhaled); steroid **Spray**; beclomethasone & fluticasone

Given if severe intermittent or moderate persistent symptoms

ADRs; Nasal irritation, fungal infection, hoarseness of voice

Can cause nervousness, insomnia, tremors, palpitations, hypertension.


Better avoided in hypertension, heart failure, angina pectoris, hyperthyroidism, glaucoma

But can cause **Rebound nasal stuffiness** [repeated administration (10 days -2 weeks)]

5. ANTICHOLINERGICS

Ipratropium

Given as nasal drops to **control rhinorrhea**So very effective **in vasomotor rhinitis** (watery hyper-secretion).
Its indication as bronchodilator in asthma

The respiratory tract is protected mainly by →

- 1. <u>MUCOCILIARY CLEARANCE</u> → ensures optimum tracheobronchial clearance → by forming sputum (in optimum quantity & viscosity) exhaled by ciliary movements
- 2. <u>COUGH REFLEX</u> → exhales sputum out, if not optimally removed by the mucociliary clearance mechanisms

Coughing is sudden expulsion of air from the lungs through the epiglottis at an amazingly fast speed (~100 miles/ hr) to rid of unwanted irritants.

Abdominal & intercostal muscles contract, against the closed epiglottis → pressure ↑ → air is forcefully expelled to dislodge the triggering irritant.

Cough is **meant to be useful** → "wet or productive"

May not be useful & annoying 2ndry to irritant vapors, gases, infections, cancer → "dry or irritant"

EXPECTORANTS

MUCOLYTICS

For Productive Cough

ANTITUSSIVE AGENTS

For Non-productive (dry) Cough

EXPECTORANTS Act by removal of mucus through

Reflex stimulation Irritate GIT → stimulate gastropulmonary vagal reflex → loosening & thinning of secretions → Guaifenesin

<u>ADRs</u>; Dry mouth, chapped lips, risk of kidney stones(↑ uric a. excretion)

Direct stimulation Stimulate secretory glands → ↑ respiratory fluids production → **Iodinated glycerol, Na or K iodide / acetate , Ammonium chloride, Ipecacuanha**

<u>ADRs</u>; Unpleasant metallic taste, hypersensitivity, hypothyroidism, swollen salivary glands (overstimulation of salivary secretion), & flare of old TB.

Final outcome is that cough is indirectly diminished

INDICATIONS

- Common cold
- **4** Bronchitis
- Pharyngitis
- **4**Chronic paranasal sinusitis

MECHANISM OF ACTIONS

Mucolytic agents are used to dissolve or breakdown mucus in the respiratory tract → becomes easily exhaled by mucociliary clearance (MCC) or by less intense coughing

Mucolysis occurs by one or more of the following;

- + \vee iscoelasticity by \uparrow water content; **Hypertonic Saline & NaHCO**₃
- **♣ ♦** Adhesivness; **Steam inhalation**
- **♣** Breakdown S-S bonds in glycoproteins **▶** less viscid mucous; N-Acetyl Cysteine
- **Synthesize serous mucus + activate ciliary clearance & transport; Bromohexine**

Ambroxol

Cleavage of extracellular bacterial DNA, that contributes to viscosity of sputum in case of infection; rhDNAase = recombinant human deoxyribonuclease (Pulmozyme)

INDICATIONS

■ Most mucolytics → effective as adjuvant therapy in COPD, asthma, bronchitis, ...etc. (when there is excessive &/or thick mucus....)

- 1. N-Acetylcysteine Breakdown S-S bonds in glycoproteins
- → It is also a free radical scavenger → used in acetaminophen overdose

2. Bromhexine & its metabolite Ambroxol Synthesize serous mucus

They also ↑ immuno defence so ↓ antibiotics usage

They also **→** pain in acute sore throat

3. Pulmozyme (Dornase Alpha or DNAse)

- **→** A recombinant human deoxyribo-nuclease-1 enzyme that is neubilized
- → Full benefit appears within 3-7 days

ANTITUSSIVE AGENTS

Stop or reduce cough by acting either peripherally or on CNS components of cough reflex

1. PERIPHERALLY ACTING ANTITUSSIVES

A. Inhibitors of airway stretch receptors

In Pharynx → Use Demulcents → form a protective coating

Lozenges & Gargles

In Larynx → Use Emollients → form a protective coating menthol & eucalyptus.

In Tracheobronchial Airway → Use aerosols or inhalational of hot steam tincture benzoin compound & eucalyptol

<u>During bronchoscopy or bronchography</u> → Use local anaesthetic aerosols, as <u>lidocaine</u>, <u>benzocaine</u>, <u>and tetracaine</u>

B. Inhibitors of pulmonary stretch receptors in alveoli

Benzonatate → **+** sensitivity (numbing) of receptors by local anesthetic action.

ANTITUSSIVE AGENTS

2. CENTRALLY ACTING ANTITUSSIVES

A. OPIOIDS activating μ opioid receptors **e.g. Codeine & Pholcodine**

B. NON-OPIODS Antihistaminics (>sedating)

Dextromethorphan

It ↑ threshold at cough center. It has benefits over opioids in being →

- 1. As potent as codeine but no drowsiness
- 2- Less constipating
- 3- No respiratory depression.
- 4- No inhibition of mucociliary clearance
- 5- No addiction.

ADRS

In normal doses, nausea, vomiting, dizziness, rash & pruritus

