

Immunology of Asthma

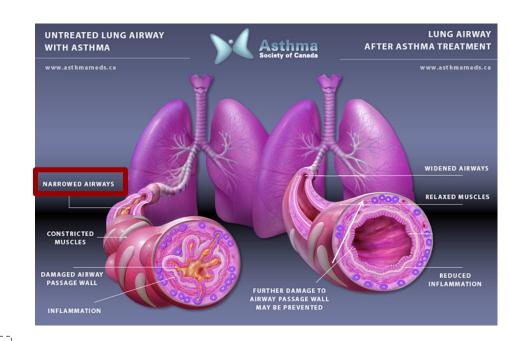
Color index

Red: Important
Grey: Extra information
Green: Notes
Pink: Girls slides
Orange: Boys slides

Objectives

- To know the difference between extrinsic and intrinsic asthma.
- To be familiar with types of allergens and their role in the allergic sensitization.
- To understand the inflammatory processes operating in allergic asthma.
- To know about the airway remodeling.

Immunology of Asthma


Asthma: a chronic inflammatory disorder of the airways that causes recurrent episodes of wheezing, breathlessness, chest tightness and cough. (pathology)

Asthma is a clinical syndrome characterized by:

- 1. **Reversible** airway obstruction
- 2. Increased bronchial reactivity
 Low threshold of sensitivity عنده
- 3. Airway Inflammation

Symptoms of Asthma:

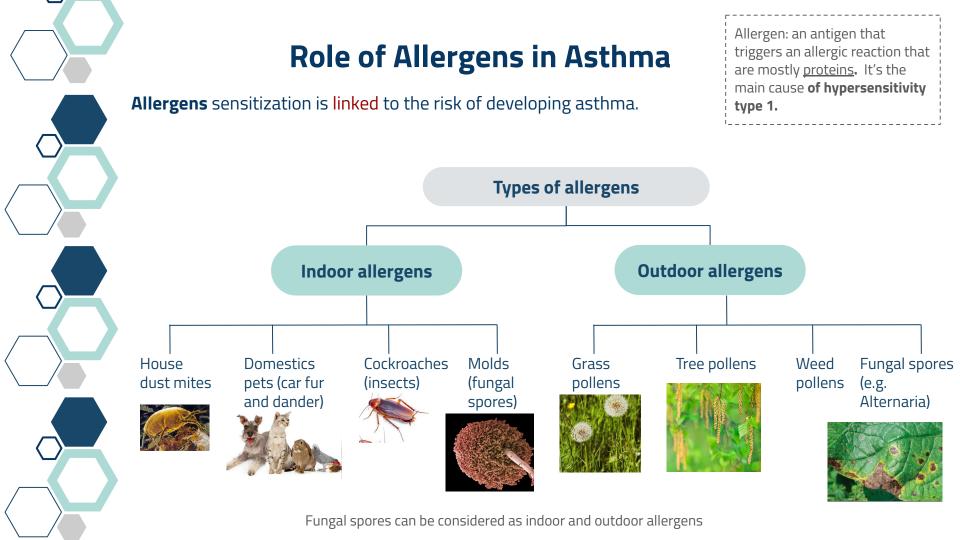
- Breathlessness (difficulty in breathing)
- 2. Wheezing
- 3. Persistent cough
- 4. Chest tightness

Wheeze: is a high-pitched, musical, adventitious lung sound produced by airflow through an abnormally narrowed or compressed airway(s)

Atopy: genetic tendency to develop allergy

Non-atopic asthma Intrinsic

Not allergic asthma
Does not affect the immune system


Atopic asthma Extrinsic

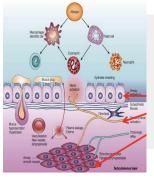
Allergic asthma Affects the immune system

Classification	Non-atopic asthma	Atopic asthma Less severe 60-90% children 50% adults Needed High			
Severity	More severe				
Prevalence	Older patients (10-33% of asthmatics), less common				
History of allergy	Not needed				
Serum IgE	Normal				
Skin test (skin prick test)	Negative	Positive (in 70-85%)			
Family history	Non	May have			

APCs & Allergic response

There are 2 subsets of DC (APC's) in the lungs:

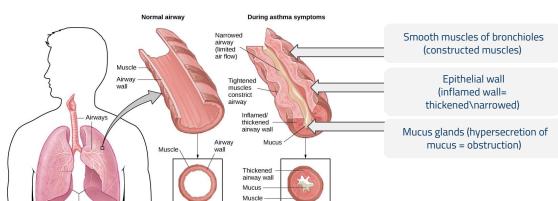
Myeloid DC


Help in the development of asthma symptoms

02 Plasmacytoid → DC

Aid in the respiratory tolerance to allergens

APC= Antigen Presenting cell


DC= dendritic cell

Asthma results from **complex interactions among the inflammatory cells that involve:**

- 1.Airway epithelium (inflamed)
- 2.Nervous system (inflamed)
- 3.Bronchial smooth muscles (constriction)

Factor contributing to airflow obstruction leading to difficulty in breathing include:

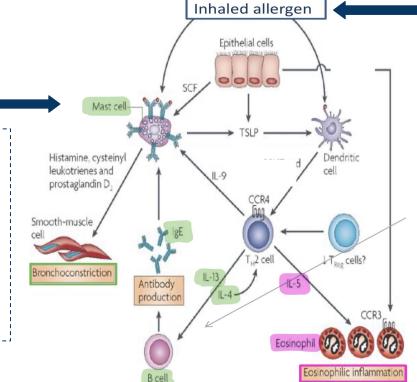
Airway cross-section

Allergic response

Inhaled allergens

Subsequently, Inhaled allergens activate submucosal mast cells in the lower airways resulting in release of mediators within seconds causing:

- 1. Bronchoconstriction
- 2. Influx of eosinophils & other inflammatory cells

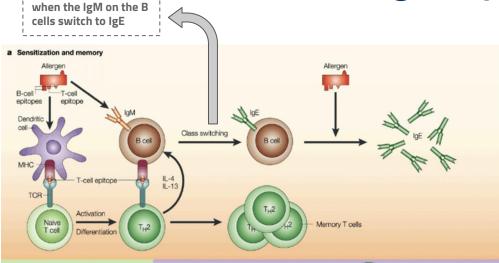

In susceptible individuals (vulnerable to allergen), *first* encounter with allergens **activate B-cells to produce IgE.**

Explanation:

Allergen \rightarrow antigen presenting cell \rightarrow transform T cell to TH2 \rightarrow TH2 will release :

- 1) IL-4, IL-13 → interact with B cell → release IgE → mast cell → release histamine → CONTRACTION OF BRONCHI
- 2) IL-5 → production of eosinophils → granules damage the airway epithelium → produce histamine → CONTRACTION OF BRONCHI

Be careful, the main cytokines responsible for the constriction are IL-4 and 13. IL-5 has an indirect effect. It's main function is explained later.



Asthma Pathophysiology It's very helpful

Allergic response

Class switching is

Degranulation C Late reaction C Late reaction The proiferation The proiferation

Extra info, focus on highlighted

- a | Sensitization and memory. Initial contact with an allergen of the respiratory tract, might favour allergen uptake by potent antigen-presenting cells (for example, dendritic cells) and/or immunoglobulin-mediated capture by specific B cells. If T helper 2 is acquired, cytokines such as interleukin-4 (IL-4) and IL-13 will be produced that will cause immunoglobulin-class switching of specific B cells to immunoglobulin E (that is sensitization). Sensitization leads to the establishment of IgE+ memory and allergen-specific memory T cells. Subsequent repeated allergen contact will boost IgE+ memory that receive T-cell help to produce increased levels of allergen-specific IgE antibodies.
- b | Immediate reaction. The crosslinking of effector-cell-bound IgE by allergens leads to the release of biologically active mediators (histamine, leukotrienes) by means of degranulation and, so, to the immediate symptoms of allergy.
- c | Late reaction. This is caused by the presentation of allergens to T cells, which become activated, proliferate and release proinflammatory cytokines (for example, IL-4, IL-5 and IL-13). This process might be enhanced by the IgE-mediated presentation of allergens to T cells. TH2 cytokines (for example, IL-5) induce tissue eosinophilia and the release of inflammatory mediators from eosinophils. APC, antigen-presenting cell; DC, dendritic cell; TCR, T-cell receptor.

This leads to: vasodilation bronchospasm

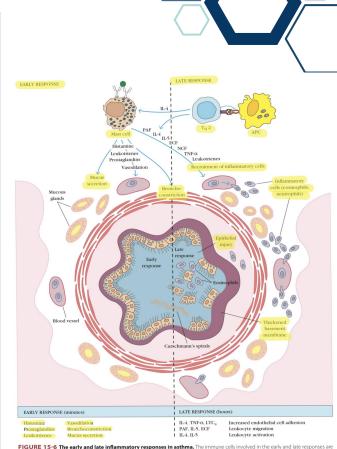
Allergic Response

Sensitization (first exposure)

- The allergen binds to the dendritic minutes): cells, driving it to
- lymphocytes. Th2 cells release multiple cytokines (IL-4-5-9-13).

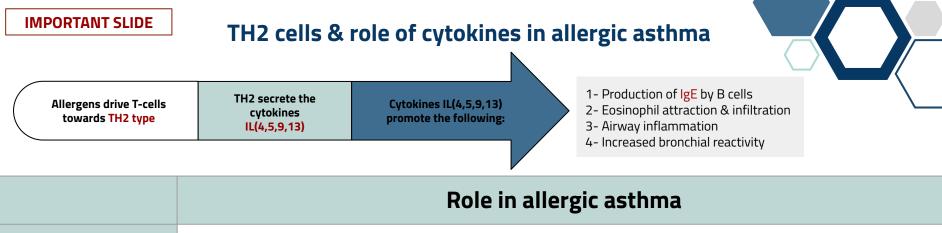
activate Th2

IL-4 activates B cells, causing a class switch and the release of IgE, which will bind to mast cells.


None of the symptoms will manifest in this phase because the mast cell will **not** release any mediators.

Response (Second exposure)

- Early response (within
 - Allergen will bind with mast cells, releasing mediators such as histamine and prostaglandins.
 - It's a *reversible* **stage** and responds to **bronchodilators**
 - Manifests clinically as:
 - Bronchial constriction
 - Airway edema
 - Mucus plugging


Late response (4-10 hours after early response):

- Activated Th2 release IL-5 that stimulate the production and release of eosinophils
- Th2 will release leukotrienes that cause smooth muscle contraction and attracts more immune cells (neutrophils, eosinophils, mast cells) to the area
- Results from inflammatory cells and activation of lymphocytes and eosinophils
- Responds to **steroids** (Anti-inflammatory drugs)

represented at the top. The effects of various mediators on an airway represented in cross-section, are illustrated in the center and in the text

Compares early and late response

2- Induces MHC II on APCs. IL4 1-Regulates isotype switching in B cells from IgM to IgE. 3-Induces adhesion molecules expression. 4- Activate mast cells & eosinophils. (during the initial priming of

TH2)

Eosinophils

Regulatory T cells

(T-Reg)

IL5 eosinophils) 2- release of eosinophils from the bone marrow into circulation.

1- induces inflammation. 2- stimulates mucus hypersecretion. **IL13**

1- suppress the effector mechanisms that induce asthmatic symptoms.

3- induces subepithelial fibrosis.

1-Initiate asthmatic symptoms by causing tissue damage in the airways of the lungs.

2- asthmatics may lack functional regulatory T cells that can inhibit an asthmatic response.

2- production of eosinophils is inhibited by IL10 (Anti-inflammatory cytokine)

1-induces an increase in eosinophil production in the bone marrow (IL5 for production while IL4 for activation of

Airway Inflammation

Activation of inflammatory cells (mast cells and eosinophils) is a major inducer of **airway inflammation** which is a <u>hallmark</u> in asthmatic lung.

Airway Inflammation

Airway Remodelling

Change of the histology of the mucosa

تصير متقدمة مع الزمن وراح تزيد اعراض الasthma

Bronchial hyperreactivity

Easily triggered bronchospasm

حساسية ال bronchus تصير عاليه ويسبب Asthma attack

Airway remodeling:

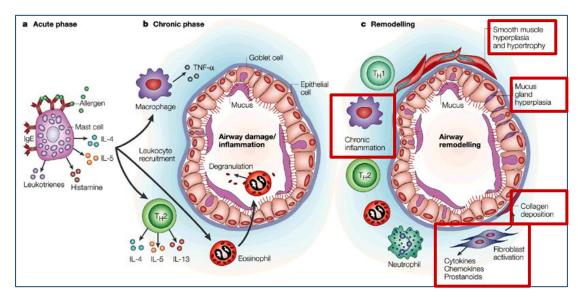


Diagram is explained in the next slide...

Airway remodeling (Healing)

Products of the inflammatory cells (cytokines) cause:

1- Airway smooth muscle cells ->

hyperplasia and hypertrophy due to repeated exposure of constriction that increases demand on cells

- **2- Lung fibroblasts** -> hyperplasia (leads to fibrosis)
- **3- Mucous glands** ->hyperplasia, activation of glands, and collagen deposition due to mucus hypersecretion
- 4- Fibroblast activation
- 5- Chronic Inflammation

في حالة ال Repeated exposure راح يصير فيه chronic asthma with air remodeling chronic Inflammatory process بسبب ال

Leads to fibrosis and <u>irreversible</u> airway obstruction

Bronchial hyperreactivity

Due to patients having increased airway reactivity, they're more likely to develop an asthma attack on exposure to **non-specific irritants:**

- 1- Chemical irritants
- 2- Smoke and strong perfumes
- 3- Sulphur dioxide and air pollutants
- 4- Viral and bacterial respiratory infections

A patient with bronchial hyperreactivity should avoid exposure to nonspecific irritants to prevent developing asthma attacks.

* Allergens are specific because they will be recognized by the APCs which then will be presented to the naive T cell, etc.. (و هذي العملية تصير لكل الاشخاص)

Whereas non-specific irritants only cause asthma attacks to patients who have bronchial hyperreactivity such as asthmatics.

Take home messages

Asthma is characterized by episodic *reversible* airway obstruction

Helpful videos

Asthma (Osmosis)

Asthma (Armando)

There are 2 types of asthma: **extrinsic** and intrinsic

In the extrinsic type allergens drive T-cells into *TH2 pattern*

Airway inflammation is a hallmark finding in the asthmatic lung

Inflammatory cells lead to increased bronchial reaction & airway remodelling which is *not reversible*

Quiz

Q1) Which of the following is a characteristic of asthma?									
А	Malaise	В	Reversible obstruction	С	Lung collapse	D	No dyspnea		
Q2) Which of the following cytokines regulates isotype switching to igE?									
А	IL-4	В	IL-13	С	IL-7	D	IL-9		
Q3) Which of the following cytokines is secreted by TH2 lymphocytes?									
А	IL-2	В	IL-3	С	IL-6	D	IL-9		
Q4) Which of the following is a characteristic of non-atopic asthma?									
А	Majority of asthmatics	В	Positive skin test	С	Family history of asthma	D	Normal serum level of IgE		
Q5) Which type of drug is appropriate to treat an asthma attack in its early response?									
А	Steroids	В	Anti-inflammatory	С	Bronchodilator	D	Aspirin		

Team Leaders

Sarah Alobaid

Ahmad Alkhayatt

Team Members

Shaden Alobaid

Bassam Alasmari

Sarah AlAidaroos

Mohammed Alkathiri

Sarah AlQuwayz

Basel Fakeeha

Immunologyteam439@gmail.com

