Lipoproteins and Atheroscloresis

Cardiovascular Block

Objectives

By the end of this lecture, the First Year students will be able to:

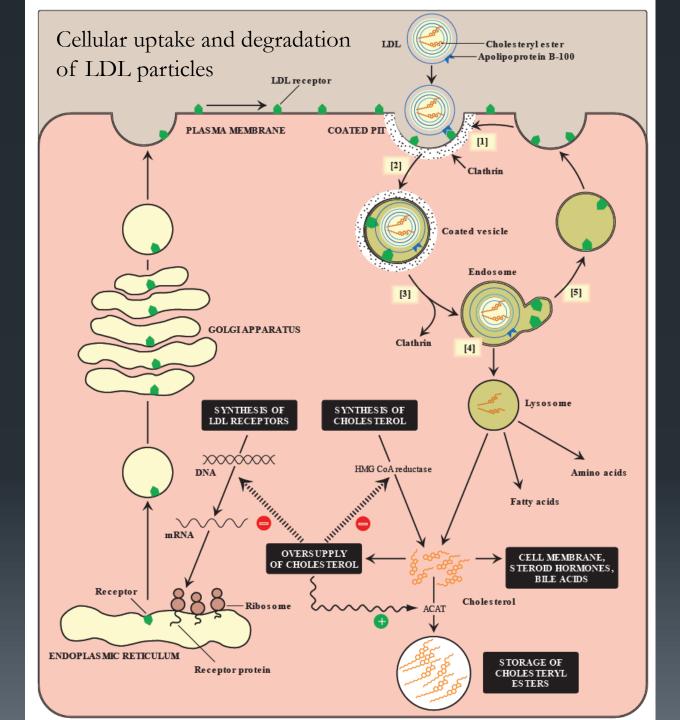
- Correlate the imbalance in lipoprotein metabolism with the development of atherosclerosis
- Understand the functions and metabolism of LDL and HDL cholesterol
- Describe the receptor-mediated endocytosis of LDL and its regulation
- Recognize how LDL is considered a bad cholesterol whereas HDL a good cholesterol
- Understand the biochemistry of atherosclerosis and its laboratory investigations
- Discuss the role of lipoprotein(a) in the development of heart disease

Overview

- Receptor-mediated endocytosis of LDL and its regulation
- LDL is bad cholesterol
- High density lipoprotein (HDL) and its functions
 Metabolism of HDL
- HDL is good cholesterol
- Atherosclerosis
- Lipoprotein(a)

Overview

Cholesterol homeostasis is a balance between cholesterol transport:


From the liver to peripheral tissues by LDLFrom peripheral tissues to the liver by HDL

Imbalance in the above leads to:
Cholesterol deposition in blood vessels
Thickening and narrowing of the lumen of arteries
Atherosclerosis
Heart disease

Receptor-mediated endocytosis of LDL particles

Major steps:

- Binding of Apo B-100 to LDL receptor glycoprotein
- Endocytosis
- Endosome formation (LDL vesicle fuses with other vesicles)
- Separation of LDL from its receptor
- Receptor is recycled
- LDL degraded by lysosomes releasing:
 - Free cholesterol, fatty acids, amino acids, phospholipids

Regulation of LDL endocytosis

Down regulation:

- High intracellular cholesterol level causes:
 - Degradation of LDL receptors
 - Inhibition of receptor synthesis at gene level
 - Reduction in cell surface receptors
 - Decreased uptake of LDL by cells
 - Decreased *de novo* synthesis of cholesterol

Up regulation:

- Low intracellular cholesterol level causes:
 - Recycling of LDL receptors
 - Increased receptor synthesis at gene level
 - Increase in cell surface receptors
 - Increased uptake of LDL by cells
 - Increased *de novo* synthesis of cholesterol

LDL is bad cholesterol

- Transports cholesterol to peripheral tissues
 Elevated LDL levels → increased risk for atherosclerosis / heart disease
 Deficiency or defects in LDL receptors results in:
 Decreased uptake of cholesterol by cells
 Increased accumulation of cholesterol in blood vessels
- Familial hypercholesterolemia
 - Patients are unable to clear LDL from blood
 - Premature atherosclerosis and heart disease

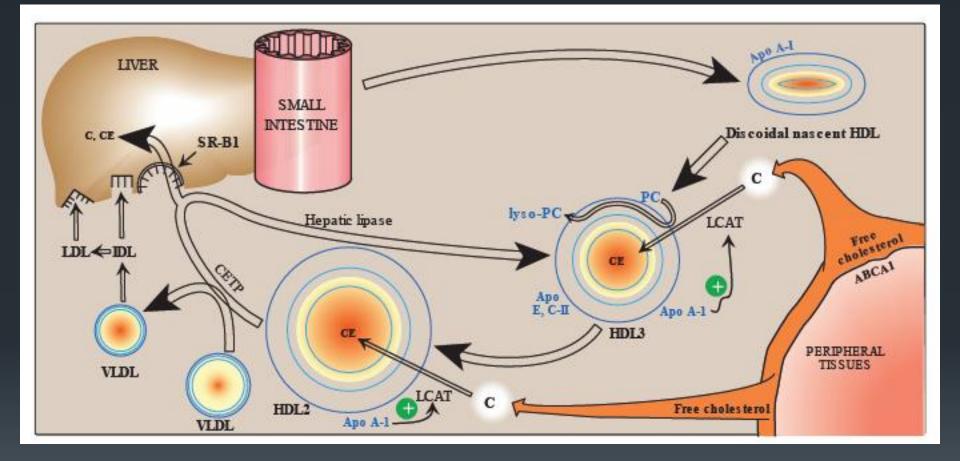
High density lipoprotein (HDL)
Nascent HDL:
Disk-shaped

Contains apo A-I, C-II and E lipoproteins

Mainly contains phospholipids

Mature HDL:

Nascent HDL + cholesteryl esters \rightarrow HDL₃


- HDL₃ + more cholesteryl esters \rightarrow spherical HDL₂

• HDL₂ transfers cholesterol to the liver

Functions of HDL

- Reservoir of apoproteins (Apo C-II and E)
- Transports cholesterol to liver from:
 - Peripheral tissues
 - Other lipoproteins
 - Cell membranes
- Suitable for cholesterol uptake due to:
 - High content of phospholipids
 - Phospholipids solubilize cholesterol and provide fatty acids for cholesterol esterification

HDL metabolism

HDL is good cholesterol

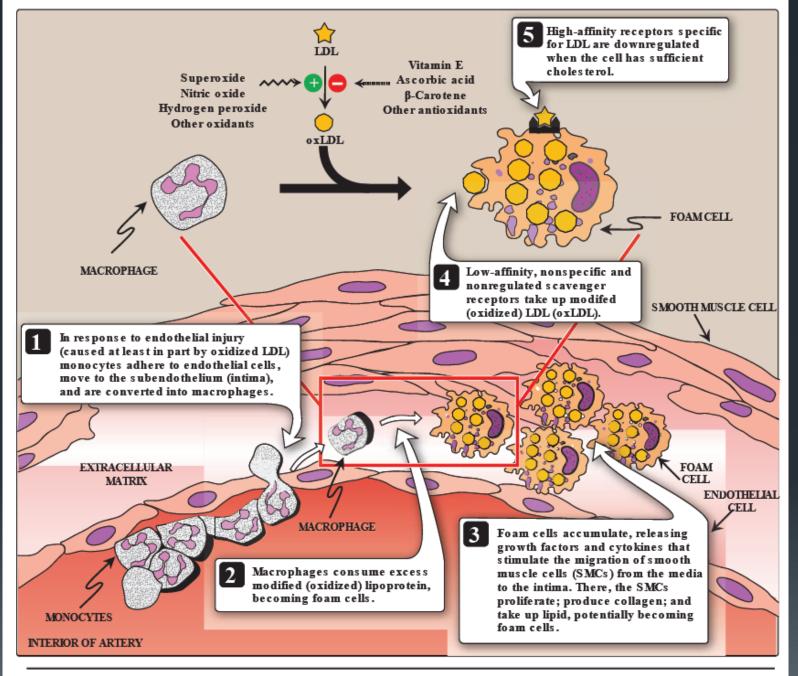
- HDL transports cholesterol from peripheral tissues to the liver for degradation
- Reduces cholesterol level in tissues and circulation (reverse cholesterol transport)
- High HDL levels have inverse correlation with atherosclerosis
- Reverse cholesterol transport includes:
 - Cholesterol efflux from peripheral tissues to HDL
 - Cholesterol esterification
 - Binding and transfer of cholesteryl ester-rich HDL₂ to liver
 - Release of lipid-depleted HDL₃

Atherosclerosis

LDL uptake by cells is receptor mediated

 Additionally, macrophages possess scavenger receptors called scavenger receptor class A (SR-A)

The macrophages take up chemicallymodified LDL by endocytosis


Atherosclerosis

Chemically-modified LDL contains oxidized lipids and Apo B

Unlike LDL receptors, the SR-A is not down-regulated in response to high intracellular cholesterol

Cholesteryl esters accumulate in macrophages converting to foam cells

Foam cells contribute to plaque formation and atherosclerosis

Figure 18.22

Role of oxidized lipoproteins in plaque formation in an arterial wall. LDL = low-density lipoprotein.

Lab investigations of atherosclerosis

- •Fasting serum lipid profile:
 - TAG level (reflects chylomicron and VLDL levels)
 - LDL, HDL levels
 - Total cholesterol level (reflects LDL, HDL and cholesterol levels)
- •Other tests:
 - Serum lipoprotein electrophoresis
 - Serum apoprotein levels (e.g., apo-B)

Lipoprotein (a)

Lp(a) is identical in structure to LDL particle
Contains apo(a) in addition to apo B-100
High plasma Lp(a) level is associated with increased risk of coronary heart disease

Circulating levels of Lp(a) are determined by:
Genetics (mainly)
Diet (trans FAs increase Lp(a) levels)
Estrogen (decreases Lp(a) levels)

Lipoprotein (a)

The apo(a) protein is structurally similar to plasminogen

Competes with plasminogen
Slows the breakdown of blood clots
Triggering heart attack
A risk factor for CAD

Take home message

- Imbalance in the LDL and HDL metabolism causes increased accumulation of lipids in the body
- LDL is bad cholesterol whereas HDL is good cholesterol
- The pathogenesis of atherosclerosis includes the uptake of oxidized LDL by macrophages through scavenger receptor class A (SR-A) producing foam cells and atherosclerotic plaque
 Individuals with high level of plasma Lp (a) are at
- higher risk for coronary heart disease

References

Lippincott's Biochemistry. 6th Edition, Chapter 18, pp. 231-237. Lippincott Williams & Wilkins, New York, USA.