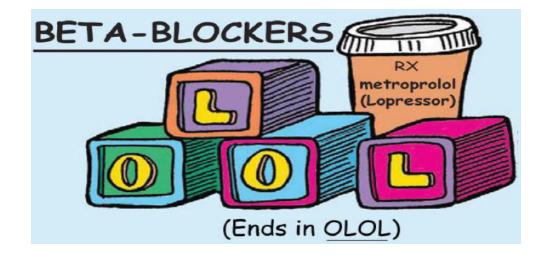

β- Adrenoceptors blockers

Prof. Hanan Hagar Pharmacology Unit College of Medicine

By the end of this lecture, the student should be able to

- Outline the mechanisms of action of B-blockers
- Classify B-receptor blockers into selective & non- selective
- Know the pharmacokinetic aspects & pharmacodynamic effects of B- adrenergic blockers.
- Identify the specific uses of non selective and selective
 B-adrenergic blockers.


Classification of \beta-Adrenoceptors Blockers

Selective \$1 antagonists
Acebutolol, Atenolol
Bisoprolol, Betaxolol
Celiprolol
Esmolol, Metoprolol

Non selective β- Antagonists
Blocks β1& β2 receptors
Oxprenolol
Propranolol, Pindolol
Sotalol, Timolol (STOP)

Mixed α, β receptors blockers

- Carvedilol
- > Labetalol

B ADRENOCEPTOR BLOCKERS

Pharmacodynamic Classification

According to selectivity

Non-Selective

Block β_1 & β_2

Selective

Block β₁

Propranolol, Sotalol, Timolol (Eye) Atenolol, Bisoprolol, Metoprolol, Esmolol

Labetalol, Carvedilol (mixed α , β blockers)

According to presence of agonistic/antagonistic action; Intrinsic Sympathomimetic Activity (ISA)

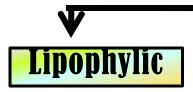
Without ISA

Atenolol, Bisoprolol, Metoprolol

Propranolol, Sotalol, Timolol, carvedilol

With ISA (may activate beta receptors)

Acebutolol, Pindolol, Oxprenolol, Celiprolol

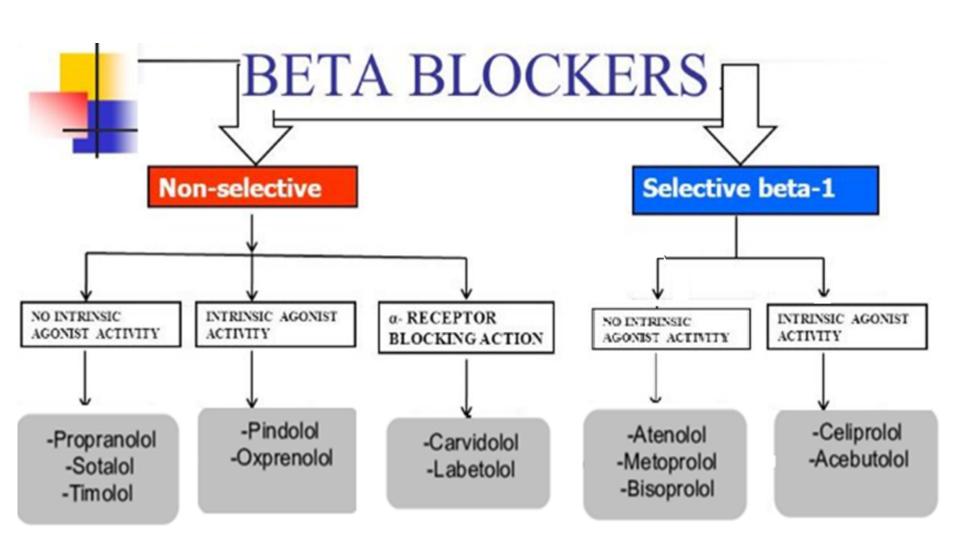

According to presence of membrane stabilizing effects i.e. Block Na Channels

Propranolol, labetalol

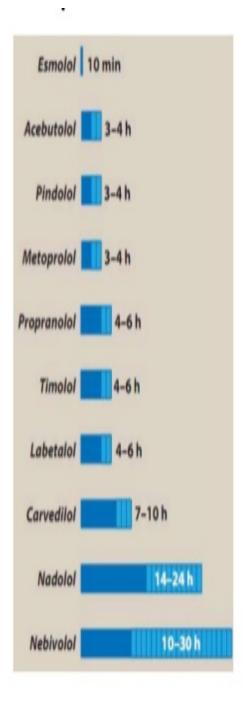

Quinidine-like action Antiarrythmic action

β ADRENOCEPTOR BLOCKERS

Pharmacokinetic Classification

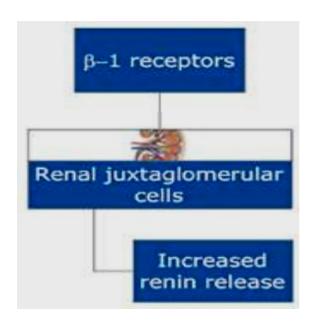

According to their lipid solubility

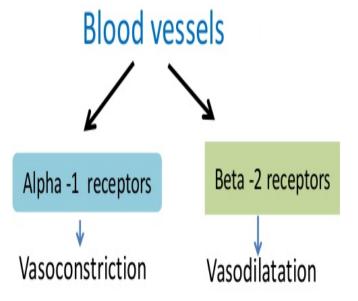
	Lipophilic	Hydrophilic
Oral absorption	Complete	Irregular
Liver metabolism	Yes	No
t _{1/2}	Short	Long
CNS side effects	High	low
	Metoprolol Propranolol, Timolol Labetalol , Carvedilol	Atenolol, Bisoprolol, Esmolol Sotalol


CNS depressant effects i.e. Sedative effect → **↓** Anxiety

β ADRENOCEPTOR BLOCKERS

Pharmacokinetis of β -blockers:


- Most of them are lipid soluble
- Lipid soluble β–blockers
 - well absorbed orally.
 - are rapidly distributed, cross readily BBB
 - Have CNS depressant actions
 e.g. Metoprolol, propranolol, timolol, labetalol, carvedilol
- Most of them have half-life from 3-10 hrs except Esmolol (10 min. given intravenously).
- Most of them metabolized in liver & excreted in urine.



β–receptors

B Receptor location

Receptor	Location
β1	Heart, JG cells in kidney
β2	Bronchi, blood vessels, liver, skeletal muscle
β3	Adipose tissue

Pharmacological effects of β -agonists

TISSUE	RECEPTOR TYPE	ACTION
HeartSinus and AVConduction pathwayMyocardial fibrils	β1 β1 β1	↑Automaticity ↑Conduction velocity, automaticity ↑Contractility, automaticity
Vascular smooth muscle	β2	Vasodilation
Bronchial smooth muscle	β2	Bronchodilation
Kidneys	β1	↑Renin release
Liver	β2	↑Glycogenolysis and gluconeogenesis
Adipose tissue	β3	↑Lipolysis
Skeletal muscle	β2	Tremor

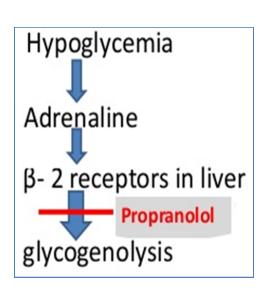
Pharmacological effects of β -agonists

β_1 (Heart):

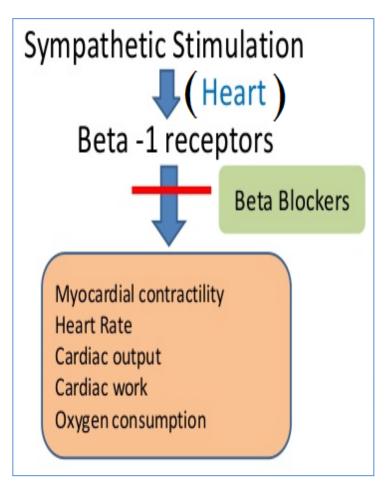
- ➤ Increase heart Rate → Positive chronotropic effect.
- \triangleright Increase in contractility \rightarrow Positive inotropic action.
- \triangleright Increase in conduction velocity \rightarrow Positive dromotropic.
- β_2 : relaxation of smooth muscles
- β₂: Hyperglycemia
- β_2 : \uparrow Release of glucagon from pancreas
- β_2 α 1: Glycogenolysis & gluconeogenesis in liver
- **B3**: ↑ Lipolysis by adipose tissue
- **Pre-synaptic β2 Receptors:** ↑ release of NE
- (Positive feed back mechanism).

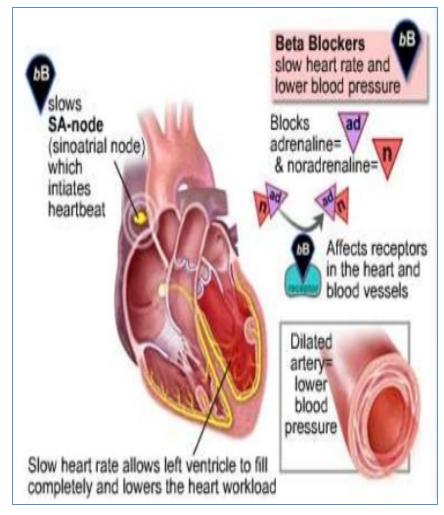
Pharmacological actions of β -Adrenergic blockers:

CVS: Negative inotropic, chronotropic, dromotropic → **↓** CO


Antianginal effects (ischemic heart disease):

- ↓ Heart rate (bradycardia)
- ↓ force of contraction → ↓ cardiac work
- ↓ Oxygen consumption due to bradycardia


Anti-arrhythmic effects:


- **◆**excitability, **◆** automaticity

All β -Adrenergic blockers mask hypoglycemic manifestations in diabetic patients \rightarrow COMA

Pharmacological effects of β -blockers on CVS

Pharmacological actions of \(\beta\)-Adrenergic blockers:

Blood vessels β_2

- lacktriangle peripheral resistance (PR) by blocking vasodilatory effect eta_2
- **♦** blood flow to organs **♦** cold extremities


contraindicated in peripheral diseases like Reynaud's disease

Blood pressure

Antihypertensive → → BP in hypertensive patients due to effects on:

- **4** Inhibiting heart properties → **4** cardiac output ($β_1$)
- \blacksquare β Blockade \blacksquare renin secretion \blacksquare Ang II & aldosterone secretion (β_1).
- Presynaptic inhibition of NE release from adrenergic nerves

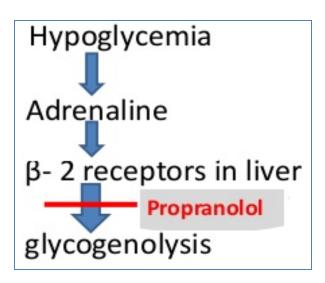
Renin-angiotensin-aldosterone system

Pharmacological actions of \(\beta - Adrenergic blockers: \)

Respiratory tract: β_2

- Bronchoconstriction
- contraindicated in asthmatic patients.

Eye:


- **↓** aqueous humor production from ciliary body
- **↓** Reduce intraocular pressure (IOP)
- e.g. timolol as eye drops

Intestine: † Intestinal motility

Pharmacological actions of β -Adrenergic blockers:

Metabolic effects:

- Hypoglycemia
 - **↓** glycogenolysis in liver
 - **↓** glucagon secretion in pancreas
- ↓ lipolysis in adipocytes
- Na⁺ retention 2^{ndry} to →BP → renal perfusion

- Cardiovascular disorders
 - Hypertension
 - Arrhythmia
 - Angina pectoris
 - Myocardial infarction
 - Congestive heart failure
- Pheochromocytoma
- Chronic glaucoma mainly timolol
- Hyperthyroidism (thyrotoxicosis)
- Migraine headache prophylaxis
- Anxiety (somatic symptoms)

In Hypertension:

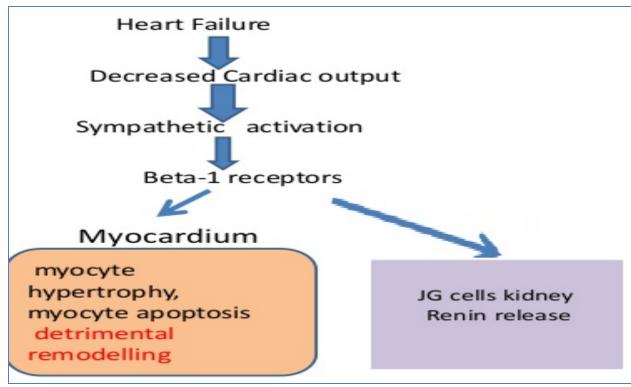
e.g. Propranolol, atenolol, bisoprolol

Labetalol: α , β blockers in hypertensive pregnant & hypertensive crisis.

In cardiac arrhythmias:

In supraventricular & ventricular arrhythmias.

e.g. Bisoprolol and carvedilol are preferred


Angina pectoris:

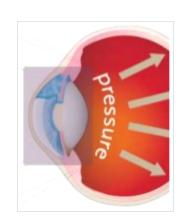
- ↓ heart rate, ↓ cardiac work & oxygen demand.
- \downarrow the frequency of angina episodes.

Congestive heart failure:

e.g. carvedilol:

- antioxidant and non selective α,B blocker
- • myocardial remodeling & ↓risk of sudden death.

Myocardial infarction:

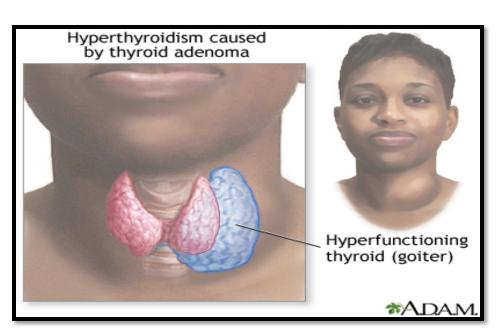

Have cardio-protective effect

- **↓** infarct size
- **→**morbidity & mortality **→**
- **→** myocardial O2 demand.
- Anti-arrhythmic action.
- \(\psi\) incidence of sudden death.

In glaucoma

e.g. Timolol as eye drops

- Decreases secretion of aqueous humor by ciliary body.
- Decreases Intraocular pressure (IOP)



In Hyperthyroidism

Protect the heart against sympathetic over

stimulation

- Controls symptoms;
 - Tachycardia
 - Tremors
 - Sweating

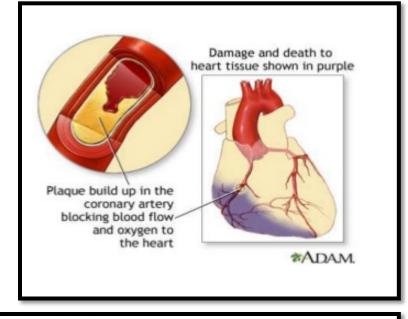
In anxiety (Social and performance type) e.g. Propranolol

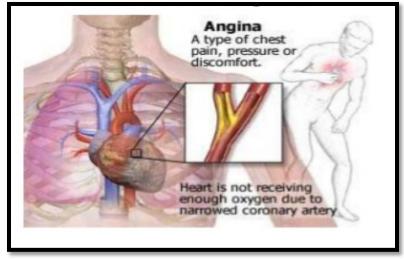
Controls symptoms due to sympathetic system stimulation as tachycardia, tremors, sweating.

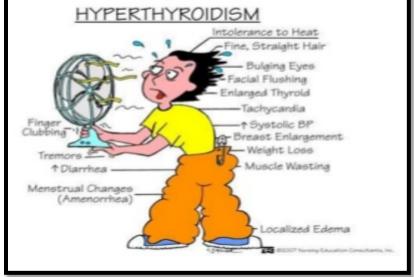
Migraine:

Prophylactic

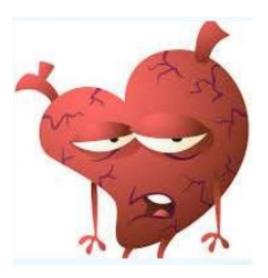
- **+**reduce episodes of chronic migraine
- **★**catecholamine-induced vasodilatation in the brain vasculature


e.g. propranolol


Pheochromocytoma used with α-blockers (never alone)

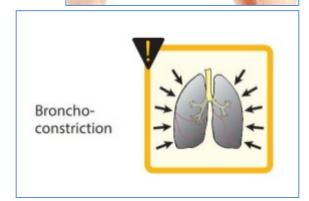

- α-blockers lower the elevated blood pressure.
- β-blockers protect the heart from NE.

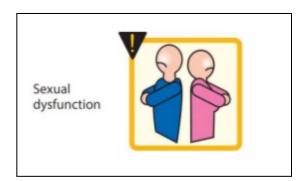
Uses of B-blockers



Adverse Effects of \beta- Adrenoceptors blockers

Due to blockade of β1- receptor:


Bradycardia, hypotension, heart failure


Adverse Effects of \beta- Adrenoceptors blockers

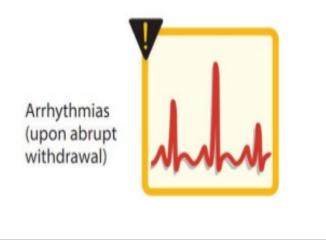
Due to blockade of β 2- receptor: only with non-selective β blockers

- Hypoglycemia
- **A** TG **→**hypertriglyceridemia
- Bronchoconstriction (# Asthma, emphysema).

- cold extremities & intermittent claudication (due to vasoconstriction).
- Erectile dysfunction & impotence
- Coronary spasm → in variant angina patients

Adverse Effects of \beta- Adrenoceptors blockers

- Depression, and hallucinations.
- Gastrointestinal disturbances.
- Sodium retention
- Fatigue



♣ All β–Adrenergic blockers mask hypoglycemic manifestations i.e. tachycardia, sweating, **▶** COMA

Precautions

Sudden stoppage will give rise to a withdrawal syndrome:

- ✓ Rebound angina, arrhythmia, myocardial infarction &
- ✓ Hypertension
- WHY? \rightarrow Up-regulation of β -receptors.
- ✓ To prevent withdrawal manifestations → drug withdrawn gradually.

Contraindications of β - Adrenoceptors blockers

- Heart Block (beta blockers can precipitate heart block).
- Bronchial Asthma (safer with cardio-selective β-blockers).
- Peripheral vascular disease (safer with cardio-selective βblockers).
- Diabetic patients → Masking of hypoglycemia / GIVEN
 CAUSIOUSLY
- Hypotension
- \circ Alone in pheochromocytoma (must be given with an α -blockers).

PROPRANOLOL

- Non-Selective Competitive Blocker of β₁ & β₂
- Membrane stabilizing action/ quinidine-like /local anesthetic effect
- sedative actions /No ISA

Pharmacokinetics

Lipophilic

- completely absorbed
- 70% destroyed during 1st pass hepatic metabolism
- 90-95% protein bound
- cross BBB and excreted in urine.
- Can be given p.o or parenteral

Pharmacological actions

- Membrane Stabilization: Block Na channels → direct depressant to myocardium → has local anesthetic effect (anti-arrhythmic effects).
- β-blocking Effect: → (anti-arrhythmic effects).
- CNS Effect: Has sedative action

 tremors & anxiety

 used to protect against social anxiety performance anxiety.

PROPRANOLOL

Cardiovascular system

Heart by blocking β_1 :

Blood Pressure (by blocking $\beta_1 \& \beta_2$):

Has antihypertensive action by →

- Presynaptic inhibition of NE release from adrenergic nerves
- Inhibiting sympathetic outflow in CNS

Actions

Mainly by β_2 blockade

- Blood Vessels: Vasoconstriction → → blood flow specially to muscles, other organs except brain → cold extremities
- Bronchi: Bronchospasm specially in susceptible patients
- Intestine: Intestinal motility
- Metabolism:

 - In pancreas:
 ← Glucagon secretion
- On peripheral & central nervous systems:

PROPRANOLOL

INDICATIONS

- Hypertension
- Arrhythmias
- **4** Angina
- Myocardial infarction
- **4**Migraine [Prophylaxis]
- \blacksquare Pheochromocytoma; used with α -blockers (never alone)
- **4** Chronic glaucoma
- **Tremors**
- **Anxiety:** (specially social & performance type)
- Hyperthyroidism

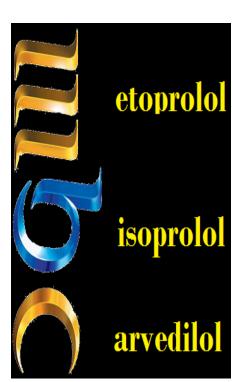
Labetalol

- ✓ Blocks $\alpha_1 \& \beta$
- ✓ Rapid acting, non-selective with ISA
- ✓ Has local anesthetic effect, Given p.o and i.v.
- ✓ Does not alter serum lipids or blood glucose
- ✓ Produce peripheral vasodilation
- ✓ Decrease blood pressure

Uses

- Severe hypertension in pheochromocytoma
- ✓ Hypertensive crisis (e.g. during abrupt withdrawal of clonidine).
- ✓ Used in pregnancy-induced hypertension

ADR: Orthostatic hypotension, sedation & dizziness


CARVEDILOL

Blocks $\alpha_1 \& \beta$

- ✓ Non-selective with no ISA & no local anesthetic effect.
- ✓ Has ANTIOXIDANT action
- ✓ Used effectively in → CONGESTIVE HEART FAILURE → reverses its pathophysiological changes.

Adverse effects:

Orthostatic hypotension, Edema

Summary of B-blockers uses

- Hypertension Atenolol, Bisoprolol, Metoprolol, Propranolol
- o cardiac arrhythmia Esmolol (ultra-short acting), Atenolol, Propranolol
- o **Congestive heart failure** Carvedilol, Bisoprolol, Metoprolol
- Myocardial infarction Atenolol, Metoprolol, Propranolol
- Glaucoma Timolol
- Migraine prophylaxis Propranolol
- o Relief of anxiety (social & performance) Propranolol
- Thyrotoxicosis Propranolol

B-receptor blockers

	1 (011 001001)	Tilground proping
	B ₁ , β ₂ blocker	Hyperthyroidism
	1, 7 2	(thyrotoxicosis)
		Relieve anxiety (social
		performance)
Timolol	B ₁ , β ₂ blocker	Glaucoma
Atenolol		
Bisoprolol	B ₁ blocker	Myocardial infarction
Metaprolol		Hypertension

Migraine prophylaxis

Cardiac arrhythmia

Congestive heart failure

Hypertension in pregnancy

Hypertensive emergency

B₁ blocker

a, B blocker

a, B blocker

Ultra short acting

Propranolol Non selective

Metoprolol

Carvedilol

Labetalol

Esmolol

To increase your knowledge

Intermittent claudication

Peripheral artery disease most commonly affects the <u>legs</u>, but other arteries may also be involved. The classic symptom is leg pain when walking which resolves with rest.

Risk factors:

Diabetes, hypercholesterolemia, hypertension

