Lactic Acidosis

Dr. Essa Sabi

Objectives

- Define metabolic acid-base disorders including lactic acidosis
- Understand the causes and clinical effects of metabolic acidosis and alkalosis
- Recall the lactate metabolism in the body
- Differentiate between the types of lactic acidosis
- Understand the clinical significance of measuring anion gap
- Discuss the causes and diagnosis of lactic acidosis in conditions such as myocardial infarction

Overview

- Introduction to metabolic acid-base disorders
 Metabolic acidosis and alkalosis
- Lactic acidosis
 - Definition
 - Lactate metabolism in tissue
 - Mechanisms involved in lactic acidosis
 - Types and causes of lactic acidosis
 - Diagnosis and treatment

Metabolic acid-base disorders

Changes in bicarbonate conc. in the extracellular fluid (ECF) cause acid-base disorders

- Occur due to high conc. or loss of H^+ ions
- Can lead to:
 - Metabolic acidosis
 - Metabolic alkalosis

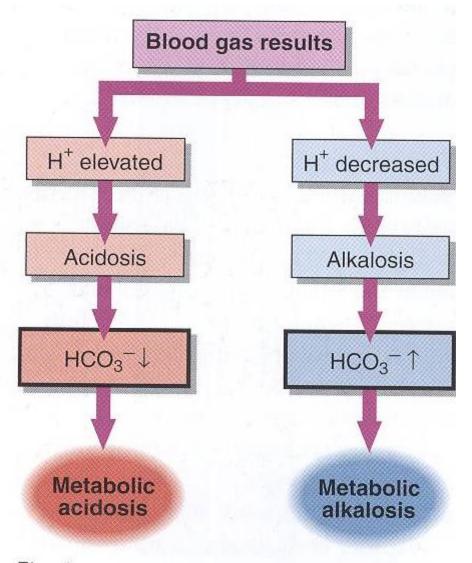


Fig. 1 Recognizing primary metabolic acid-base disorders by inspecting the HCO₃⁻ concentration.

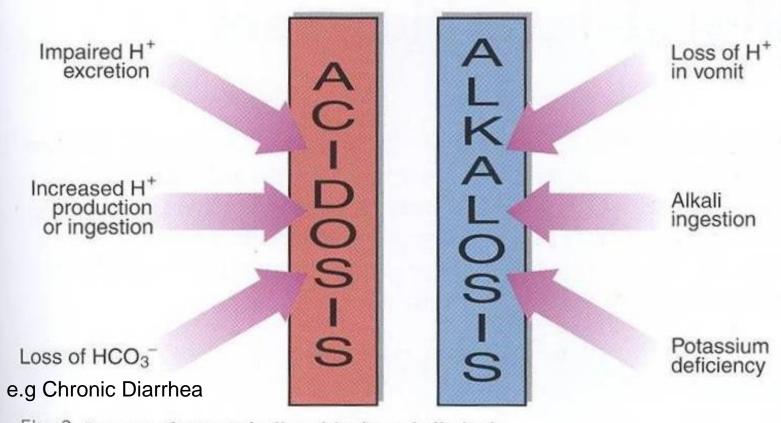


Fig. 3 Reasons for metabolic acidosis and alkalosis.

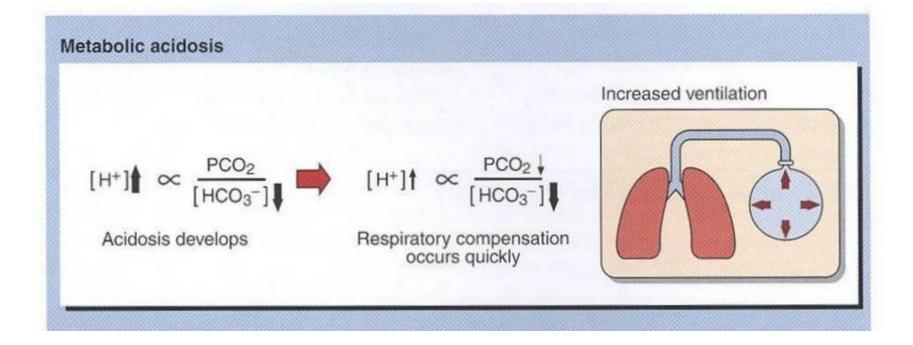
Metabolic acidosis

Reduction in bicarbonate conc. of ECF Causes are:

- Increased production of H^+ ions
- Ingestion of H^+ or drugs metabolized to acids
- Impaired excretion of H⁺

Anion gap

- It is the difference between the sum of:
 - $\hfill Na^+$ and K^+ (cations) and
 - the sum of Cl⁻ and HCO_3^- (anions)
- Helps in assessing acid-base problems
- Normal anion gap: 3-11 mEq/L
- High anion gap: >11 mEq/L (acidosis)
- Low anion gap: <3 mEq/L (alkalosis)

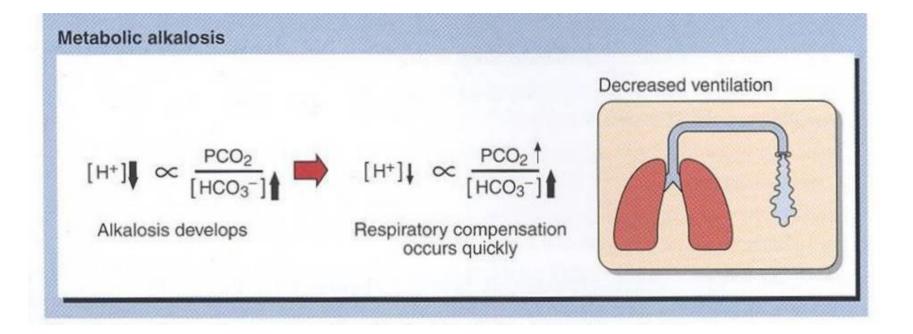

Metabolic acidosis

High anion gap occurs in:

- Renal disease
- Diabetic ketoacidosis
- Lactic acidosis
- Poisoning

Clinical effects of acidosis

- Hyperventilation is the compensatory physiological response to acidosis
- Increased H⁺ conc. stimulates respiratory response
- Hyperventilation: deep, rapid, and gasping respiratory pattern
- Arrhythmia, cardiac arrest
- Loss of consciousness, coma, death


Metabolic alkalosis

Increase in bicarbonate conc. in ECF Causes are:

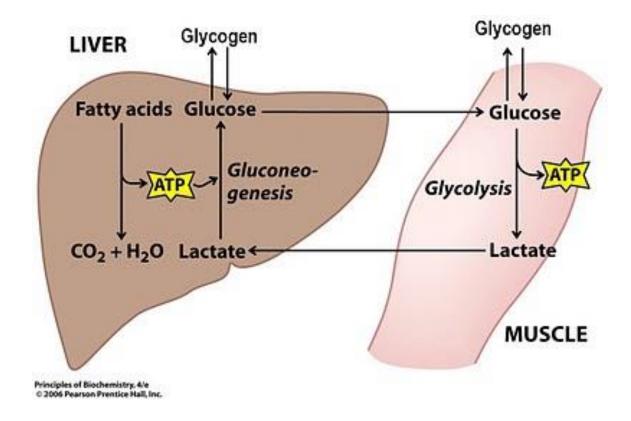
- Loss of H⁺ ions in gastric fluid due to vomiting
- Ingestion of sodium bicarbonate
- Potassium deficiency as a result of diuretic therapy

Clinical effects of alkalosis

- Hypoventilation (depressed breathing)
 - Increases PCO₂ to compensate alkalosis
 - Respiratory arrest
- Confusion, coma, death

Lactic acidosis

- Elevated conc. of plasma lactate is called lactic acidosis
- Occurs either due to:
 - Failure of circulatory system (hypoxia)
 - Disorders of carbohydrate metabolism


Lactate metabolism in tissue

- The body tissues produce ~ 1500 mmoles of lactate each day
- The lactate enters blood stream and metabolized mainly by the liver (Cori cycle)
- All tissues can produce lactate under anaerobic conditions
- Pyruvate is converted to lactate by lactate dehydrogenase enzyme

Pyruvate + NADH + H⁺

Lactate dehydrogenase

Lactate + NAD⁺

The Cori cycle

Lactate metabolism in tissue

- The skeletal muscles produce high amounts of lactate during vigorous exercise
- Lactate is metabolized in liver (60%) and kidney (30%) to glucose
- Some lactate is metabolized to CO₂ and water (Krebs cycle)

Mechanisms involved in lactic acidosis

Lactic acidosis can occur due to:

- Excessive tissue lactate production
- Impaired hepatic metabolism of lactate

Types and causes of lactic acidosis

Type A

- Due to hypoxia in tissues (most common)
- Hypoxia causes impaired oxidative phosphorylation and decreased ATP synthesis
- To survive, the cells switch to anaerobic glycolysis for ATP synthesis
- This produces lactate as a final product
- The amount of oxygen required to recover from oxygen deficiency is called oxygen debt

Types and causes of lactic acidosis

- Type A is due to inadequate supply of oxygen to tissues in:
 - Myocardial infarction
 - Pulmonary embolism
 - Uncontrolled hemorrhage
 - Tissue hypoperfusion (shock, cardiac arrest, acute heart failure, etc.)
 - Anaerobic muscular exercise

Types and causes of lactic acidosis

Type B

- Due to disorders in carbohydrate metabolism
 - Congenital lactic acidosis is due to deficiency of pyruvate dehydrogenase enzyme
- Chronic hepatic disease accompanied by shock or bleeding
- Liver failure
- Drug intoxication

Diagnosis and treatment

- Diagnosis done by measuring blood lactate levels
 - Hyperlactemia:
 - Severe lactic acidosis:

- 2-5 mmols/L
- > 5 mmols/L

- Treatment:
 - Correcting the underlying conditions
 - Restoring adequate tissue oxygen
 - Avoiding sodium bicarbonate

Take home message

- Lactic acidosis can be caused by hypoxia, excessive production and impaired clearance of lactic acid
- It carries clinical significance in the diagnosis of myocardial infarction, pulmonary embolism and other metabolic conditions

References

- Acid-Base Physiology by Kerry Brandis (www.anaesthesiamcq.com)
- Friedrich C. Luft. Lactic acidosis update for critical care clinicians., *J. Am. Soc. Nephrol.* 12: S15–S19, 2001.