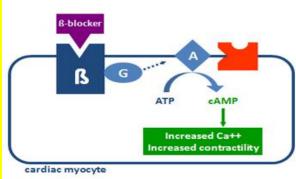
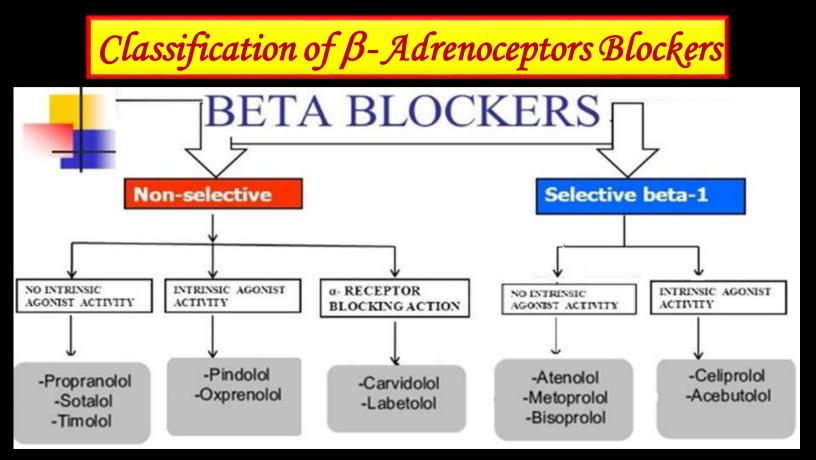

β- ADRENOCEPTORS BLOCKERS


Classify β-blockers

Discuss pharmacokinetic properties, pharmacodynamic actions, clinical uses, ADRs & contraindications of βblockers



Study in detail the pharmacokinetic properties & pharmacodynamic effects of selected β- blockers

ßeta-Blockers

ACCORDING TO WATER & LIPID SOLUBILITY

	Lipophilic	Hydrophilic
Oral absorption	Complete	Irregular
Liver metabolism	Yes	No
t _{1/2}	Short	Long
CNS side effects	High	low
	Metoprolol Propranolol, Timolol Labetalol, Carvedilol	Atenolol, Bisprolol, Esmolol Sotalol

1-First generation:- Non-selective ß- blockers

2-Second generation:- ß1- selective blockers

3-Third generation:- ß- blockers with additional effects

α1 adrenergic receptor blockade (labetalol, carvedilol)

Increased production of NO (celiprolol, nebivolol)

Ca2+ entry blockade (carvedilol)

Antioxidant action (carvedilol)

 $\beta 2$ agonist properties (celiprolol)

Opening of K+ channels (tilisolol)

PHARMACOKINETICS

Most of them are lipid soluble

Lipid soluble β -blockers are well absorbed orally

are rapidly distributed, cross readily BBB

Have CNS depressant actions

Most of them have half-life from 3-10 hrs except Esmolol (10 min. given intravenously).

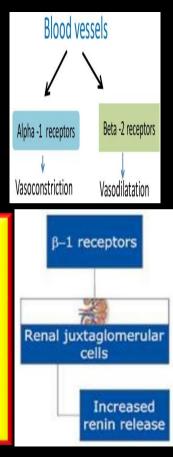
Most of them metabolized in liver & excreted in urine

PHARMACODYNAMIC EFFECTS

CVS:- Negative inotropic, chronotropic, dromotropic → ↓ CO

Antianginal effects (ischemic heart disease): ↓ Heart rate (bradycardia) ↓ force of contraction → ↓ cardiac work ↓ Oxygen consumption due to bradycardia

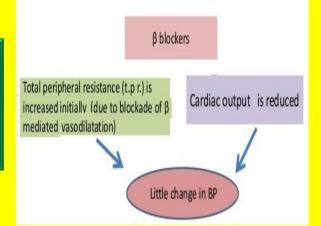
 Sympathetic Stimulation (Heart) Beta -1 receptors **Beta Blockers** Myocardial contractility Heart Rate Cardiac output Cardiac work Oxygen consumption


PHARMACODYNAMIC EFFECTS

Blood vessels β_2

♦ peripheral resistance (PR) by blocking vasodilator effect
 ♦ blood flow to organs ● cold extremities. Contraindicated
 in peripheral diseases like Reynaud's disease

Blood pressure:- Antihypertensive → ↓ BP in hypertensive patients due to effects on:

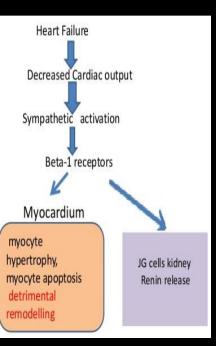

- Inhibiting heart properties \rightarrow \rightarrow cardiac output (β₁)
- Presynaptic inhibition of NE release from adrenergic nerves

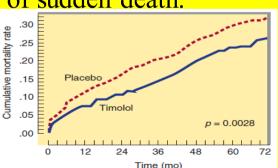
Respiratory tract: β₂ Bronchoconstriction Contraindicated in asthmatic patients

Intestine: Intestinal motility

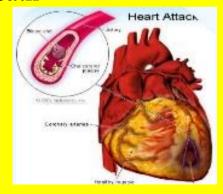
Eye: ↓Aqueous humor production from ciliary body ↓Reduce intraocular pressure (IOP) e.g. timolol as eye drops

Metabolic effects:


- -Hypoglycemia
- -↓ glycogenolysis in liver
- -↓ glucagon secretion in pancreas Hypoglycemia
- Adrenaline
- β- 2 receptors in liver Propranolol glycogenolysis
- \downarrow lipolysis in adipocytes -Na⁺ retention 2^{ndry} to +BP + + renalperfusion -All β–Adrenergic blockers mask hypoglycemic manifestations in diabetic patients + COMA



In Hypertension: Propranolol, atenolol, bisoprolol Labetalol: α , **β** blockers in hypertensive pregnant women & hypertensive crisis.


Angina In cardiac arrhythmias: pectoris: \downarrow heart rate, \downarrow In supraventricu cardiac work lar & & oxygen ventricular demand. arrhythmias. \downarrow the **Bisoprolol** frequency of and carvedilol angina are preferred episodes.

Congestive heart failure: e.g. carvedilol: oantioxidant and non selective $\alpha \& \beta$ blocker o↓ myocardial remodeling & \downarrow risk of sudden death.

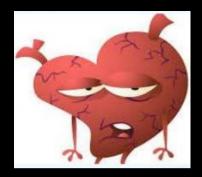
Myocardial infarction: Have cardio-protective effect \downarrow infarct size +morbidity & mortality → Anti-arrhythmic action. $\overline{\mathbf{\cdot}}$ $\odot \downarrow$ incidence of sudden death

InIn Hyperthyroidismglaucoma•Protect the hearte.g.against sympatheticTimololover stimulationas eye•Controlsdropssymptoms;tachycardia,

tremors, sweating.

*ADAM

In anxiety (Social and performance type) e.g. Propranolol Controls symptoms; tachycardia, tremors. sweating.



Migraine: Prophylactic **↓**reduce episodes of chronic migraine +catecholamineinduced vasodilatation in the brain vasculature e.g. propranolol

Pheochromocytoma used with α -blockers (never alone) $\odot \alpha$ -blockers lower the elevated blood pressure. $\odot\beta$ -blockers protect the heart from NA.

ADRS


Due to blockade of β1- receptor:Bradycardia, hypotension, heart failure

Due to blockade of β 2- receptor: (only with non-selective β blockers)

Hypoglycemia

Bronchoconstriction (# Asthma, emphysema).

 Cold extremities & intermittent claudication
 by vasoconstriction

Erectile dysfunction & impotence, Nebivolol + NO

TG → hypertriglyceridemia

ADRS

■Coronary spasm → in variant angina patients

All β–Adrenergic blockers mask hypoglycemic manifestations i.e. tachycardia, sweating, →
 COMA

ADRS

Depression, and hallucinations

Gastrointestinal disturbances

Sodium retention

Precautions: Sudden stoppage will give rise to a withdrawal syndrome: Rebound angina, arrhythmia, myocardial infarction & Hypertension WHY ? \rightarrow Up-regulation of β -receptors. To prevent withdrawal manifestations \rightarrow drug withdrawn gradually. •Heart Block (beta blockers can precipitate heart block)

 Peripheral vascular disease (safer with cardioselective β-blockers)

Bronchial Asthma (safer with cardio-selective βblockers)?

 Diabetic patients

 Masking of hypoglycaemia / GIVEN CAUSIOUSLY

Hypotension

Alone in pheochromocytoma (must be given with an α -blockers).

Can be given p.o. or parenteral

PHARMACODÝNAMIC EFFECTS

Membrane Stabilization: Block Na channels → direct depressant to myocardium→ has local anesthetic effect (anti-arrhythmic effects).

CNS Effect: Has sedative action, tremors & anxiety used to protect against social anxiety & performance anxiety.

<u>Heart</u>; by block β_1

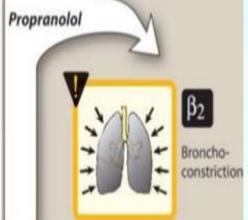
Inhibit heart properties $\Rightarrow \checkmark$ cardiac output Has anti-ischemic action $\Rightarrow \checkmark$ cardiac work $+ \checkmark O_2$ consumption Has anti-arrhythmic effects $\Rightarrow \checkmark$ excitability, automaticity & conductivity + by membrane stabilizing activity

PHARMACODÝNAMIC EFFECTS

<u>BP</u>; by block β_1

- Has antihypertensive action by →
- **4** Inhibiting heart properties **+ 4** cardiac output
- 4 β blockade : 🖶 renin & RASS system
- Presynaptic inhibition of NE release from adrenergic nerves
- Inhibiting sympathetic outflow in CNS

Blood Vessels [BV]; by blocking β₂ → Vasoconstriction → ↓ blood flow specially to muscles, other organs except brain → cold extremities


PHARMACODÝNAMIC EFFECTS

Bronchi: by block β_2 . Bronchospasm specially in susceptible patients

Intestine: by block β_2 \clubsuit Intestinal motility

On peripheral & central nervous systems:-Has local anesthetic effect. + tremors & + anxiety

Myocardial infarction

oHyperthyroidism

oChronic glaucoma

 \odot Pheochromocytoma; used with α -blockers (never alone)

Anxiety; (specially social & performance type)

LABETALOL

Rapid acting, non-selective with ISA & local anesthetic effect

Does not alter serum lipids or blood glucose

<u>Used in</u>:- (given p.o and i.v)

Hypertensive crisis (e.g. during abrupt withdrawal of clonidine)

Used in pregnancy-induced hypertension

ADRs:- Orthostatic hypotension, sedation & dizziness

CARVEDILOL

Non-selective with no ISA & no local anesthetic effect

Has ANTIOXIDANT action

Favorable metabolic profile

Used effectively in → CONGESTIVE HEART FAILURE → reverses its pathophysiological changes.

ADR;- Edema

etoprolol

isoprolol

arvedilol