Antiarrhythmic Drugs

Dr. Ahmed Z. Alanazi

Assistant Professor Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University

Cardiovascular Pharmacology

- Antiarrhythmic drugs
- Drugs in heart failure
- Antihypertensive drugs
- Antianginal drugs
- Antihyperlipidemic drugs

Learning objectives

By the end of this lecture, students should be able to:

- Understand definition of arrhythmias & their different types
- Describe different classes of Antiarrhythmic drugs & their mechanism of action
- Understand their pharmacological actions, clinical uses, adverse effects & their interactions with other drugs.

Cardiac Conduction System

CARDIAC CONDUCTION SYSTEM

- S.A. node
- Inter-nodal pathways
- A.V. node
- Bundle of His and branches
- Purkinje fibers

Electrocardiogram (ECG)

Electrical and Mechanical Events

CARDIAC ACTION POTENTIAL Pacemaker (SA node)

Time (ms)

CARDIAC ACTION POTENTIAL Non-pacemaker (ventricular muscle)

Difference between pacemaker and non-pacemaker action potential

WHAT IS ARRHYTHMIA?

An abnormality in the : rate high=tachycardia

low = bradycardia

Sinus Bradycardia

Heart Rate	Rhythm	P Wave	PR interval (in seconds)	QRS (in seconds)
< 60 bpm	Regular	Before each QRS, identical	.12 to .20	<.12

WHAT IS ARRHYTHMIA?

An abnormality in the :

■ rate

high= tachycardia low = bradycardia

regularity

Extrasystoles (PAC, PVC)

Multifocal PVC's: more than one shape

Rate	Knythm	P wave	(in seconds)	(in seconds)
A: 350-650 bpm V: Slow to rapid	Irregular	Fibrillatory (fine to course)	N/A	<.12

WHAT IS ARRHYTHMIA?

- An abnormality in the :
 - rate high= tachycardia

low = bradycardia

- regularity extrasystoles
- site of origin ... ectopic pacemakers
- or disturbance in conduction

2. Disorders of impulse conduction

May result in abnormality in rate:

- Bradycardia (if have AV block)
- Tachycardia (if reentrant circuit occurs)

Disturbances in conduction

Therapeutic use of antiarrhythmic drugs

The ultimate goal of therapy

Restore normal rhythm & conduction

Maintenance of normal rhythm

Prevention of more serious arrhythmias

How antiarrhythmic drugs produce these effects?

- <u>Slow</u> conduction velocity
- <u>Altering</u> the excitability of cardiac cells by prolonging the effective refractory period (ERP)
- <u>Suppressing</u> ectopic pacemaker activity by inhibiting phase 4 slow depolarization

CLASSIFICATION OF ANTIARRHYTHMIC DRUGS

Vaughn Williams classification

CLASS I Sodium channel blockers **CLASS II: β- adrenoceptor blockers** CLASS III: Potassium channel blockers **CLASS IV:** Calcium channel blockers.

<u>CLASS I</u>

Drugs that block the influx of Na ions through Na channels

1- decrease the rate of rise of rapid depolarization (Phase O)

2- decrease phase 4 slow depolarization (suppress pacemaker activity)

(membrane stabilizing effect)

Fast-Response Action Potential (e.g., ventricular myocyte)

 Sub classified according to their effect on action potential duration (APD) :

- la : prolong APD
- Ib : shorten APD
- Ic : Minimal effects on APD

Type I - Na Channel Blockers

Class I Antiarrhythmic Drug Effects

Increasing AP increases the QT interval

On the Ventricular Action Potential:

On the ECG:

↑QRS & **↑**QT

Blocks Na (I) and K (III) channels Slow rate of rise Increase ERP Increase AP **↓**QT

Short Repolarization Decrease in AP Decrease ERP

↑↑QRS

Pure Na channel blockers Depress rate of rise Slows conduction velocity No change in AP

Ia : prolong action potential duration e.g. Quinidine Procainamide

CLASS I a QUINIDINE

Other pharmacological actions :

1- Anticholinergic effect:

Increase conduction through the A.V. node

(risk of ventricular tachycardia)

2- α-adrenergic blocking effect:

$\mathbf{\Psi}$

- may cause vasodilatation & reflex sinus tachycardia (seen more after I.V. dose)
- **3- ECG changes:**
 - P-R and Q-T prolongation
 - widens QRS complex

CLASS I a

QUINIDINE

Therapeutic uses:

- atrial flutter & fibrillation
- maintaining sinus rhythm after cardioversion

Adverse effects :

quinidine syncope: episodes of fainting due to torsades de pointes (twisting of the spikes) developing at therapeutic plasma levels

Torsades de pointes

- may terminate spontaneously or lead to

fatal ventricular fibrillation

CLASS I a QUINIDINE

Adverse effects :

- Anticholinergic adverse effects:
- Dry mouth
- Blurred vision
- Urinary retention
- N/V/D

Hypotension

- due to depressing contractility & vasodilatation

GIVEN ORALLY (Rarely given I.V.)

PROCAINAMIDE

Similar to quinidine except :

1- less toxic on the heart... can be given I.V.

2-more effective in ventricular than in

atrial arrhythmias

3 - Less anticholinergic or α -blocking actions

Adverse effects:

- In *long term* therapy it causes reversible lupus erythematosus-like syndrome
- Hypotension
- Torsades de pointes (at toxic dose)
- Hallucination & psychosis

 Shorten action potential duration e.g. Lidocaine Mexiletine

CLASS Ib LIDOCAINE

- **Therapeutic uses :**
- treatment of <u>emergency</u> ventricular arrhythmias
- e.g. :
 - 1 during surgery
 - 2 following acute myocardial infarction
- NOT effective in atrial arrhythmias
- NOT effective orally (3% bioavailability)
- Only given I.V. bolus or slow infusion
- t_{1/2} = 2 hours

CLASS Ib LIDOCAINE

Adverse effects:

- hypotension
- similar to other local anesthetics, causes CNS adverse effects such as:
 - paresthesia
 - tremor
 - dysarthria (slurred speech)
 - tinnitus
 - confusion
 - convulsions

CLASS Ib MEXILETINE

- EFFECTIVE ORALLY
- **Therapeutic uses :**
- 1- ventricular arrhythmia
- 2- digitalis-induced arrhythmias
- t_{1/2} = 10 hours

ADVERSE EFFECTS :

- 1- nausea, vomiting
- 2- tremor, drowsiness, diplopia
- 3- arrhythmias & hypotension

 have no effect on action potential duration

> e.g. Flecainide

CLASS IC FLECAINIDE

- **Therapeutic uses :**
- supraventricular arrhythmias
- Wolff-Parkinson-White syndrome
- very effective in ventricular arrhythmias, but very high risk of proarrhythmia
- should be reserved for resistant arrhythmias

Wolff-Parkinson-White syndrome

Pre-excitation of the ventricles due to an accessory pathway known as the Bundle of Kent.

Adverse effects:

- 1- proarrhythmia
- 2- CNS : dizziness, tremor, blurred vision, abnormal taste sensations, paraesthesia
- 3- heart failure due to -ve inotropic effect.

β- ADRENOCEPTOR BLOCKERS pharmacological actions :

- block β_1 receptors in the heart \checkmark reduce the sympathetic effect on the heart \checkmark
- 1 decrease automaticity of S.A. node &

ectopic pacemakers

2 - prolong RP (slow conduction) of the A.V node

<u>CLASS II DRUGS</u> β- ADRENOCEPTOR BLOCKERS

- **Therapeutic uses :**
- 1- atrial arrhythmias associated with emotion:
 - e.g.: after exercise
 - thyrotoxicosis
- **2- WPW**

3- digitalis-induced arrhythmias.

<u>CLASS II DRUGS</u> β- ADRENOCEPTOR BLOCKERS

- **Therapeutic uses :**
 - **Esmolol**:
 - very short acting (half-life = 9 min.)
 - given I.V. for rapid control of ventricular rate in patients with atrial flutter or fibrillation

Propranolol, Atenolol, Metoprolol :

 used in patients who had myocardial infarction to reduce incidence of sudden death due to ventricular arrhythmias.

 Prolong the action potential duration & RP

Prolong phase 3 repolarization

AMIODARONE

pharmacological actions :

- prolongs action potential duration & therefore prolongs RP (Main effect)
- additional class la, II & IV effects
- vasodilating effects
- (due to its α & β -adrenoceptor blocking effects
 - & its calcium channel blocking effects)

AMIODARONE

Therapeutic uses :

1- main use : serious resistant ventricular arrhythmias

2-maintenance of sinus rhythm after cardioversion

3- resistant supraventricular arrhythmias (e.g. WPW)

AMIODARONE

Adverse effects:

- exacerbation of ventricular arrhythmias (high dose)
- bradycardia & heart failure
- pulmonary fibrosis
- hyper- or hypothyroidism
- photodermatitis & skin deposits (avoid exposure to the sun).

AMIODARONE

- **Adverse effects:**
- Neurological:
 - e.g. tremors & peripheral neuropathy
- nausea, vomiting & constipation
- corneal micro deposits
- hepatocellular necrosis

CLASS III DRUGS AMIODARONE

Pharmacokinetics:

- extremely long $t_{1/2} = 13 103 \text{ DAYS}$
- metabolized by CYP3A4 and CYP2C8 to its major

active metabolite: N-desethylamiodarone

- eliminated primarily by hepatic metabolism
- cross placenta & appear in breast milk.

CLASS III DRUGS AMIODARONE

Drug Interactions:

 1 - Co-administration of amiodarone with drugs that prolong the QT interval increases the risk of Torsades de Pointes

e.g. :

macrolide antibiotics (Clarithromycin, Erythromycin) azole antifungals (Ketoconazole)

AMIODARONE

Drug Interactions:

- 2- Drugs (or substances) that inhibit CYP3A4 & CYP2C8 enzymes cause increase in serum concentration of amiodarone
- e.g. : Loratadine, Ritonavir, Trazodone Cimetidine, Grapefruit juice
- 3- Drugs that induce these enzymes
 Cause <u>decrease</u> in serum concentration of amiodarone
 e.g. : Rifampin

PURE CLASS III Ibutilide

- Given by rapid I.V. infusion
- Used for the acute conversion of atrial flutter or fibrillation to normal sinus rhythm
- Causes QT interval prolongation

(may cause torsades de pointes).

Class 1V Calcium channel blockers

Verapamil, Diltiazem

- main site of action is A.V.N & S.A.N cause:
 - slowing of conduction
 - prolongation of ERP

Class 1V Calcium channel blockers

- **Therapeutic uses :**
- 1- atrial arrhythmias

2- re-entry supraventricular arrhythmias e.g. WPW

3- **NOT** effective in ventricular arrhythmias.

ADENOSINE

Mechanism of action :

- inhibits c.AMP by binding to adenosine A1 receptors causing the following actions:
- 1 opening of potassium channels

(hyperpolarization)

2 - decreasing conduction velocity mainly at AV node

(negative dromotropic effect)

3- inhibiting phase 4 pacemaker action potential at SA node

(negative chronotropic effect)

ADENOSINE

Therapeutic uses :

- drug of choice for acute management of paroxysmal supraventricular tachycardia
- preferred over verapamil
 (safer & does not depress contractility)
 half-life = less than 10 sec

ADENOSINE

Adverse effects:

- flushing in about 20% of patients
- shortness of breath & chest burning in 10%
 - of patients (due to bronchospasm)
- brief AV block (contraindicated in heart block)

New Antiarrhythmic Drugs

Dronedarone

- a noniodinated congener of amiodarone
- has antiarrhythmic properties belonging to all four classes
- Used for maintenance of sinus rhythm following cardioversion in patients with atrial flutter or fibrillation.

New Antiarrhythmic Drugs Dronedarone

WARNINGS

- should <u>not</u> be used in patients with severe (class IV) heart failure. Risk of death may be increased in these patients
- should <u>not</u> be used in patients with permanent atrial fibrillation. Risk of death & stroke, may be increased in these patients.

BRADYARRHYTHMIAS ATROPINE

used in sinus bradycardia after myocardial infarction & in heart block in emergency heart block isoprenaline may be combined with atropine (caution)

NONPHARMACOLOGIC THERAPY OF ARRHYTHMIAS

Implantable Cardiac Defibrillator (ICD)

- can automatically detect & treat fatal arrhythmias such as ventricular fibrillation

Thank you