

Renal Physiology

Tubular reabsorption & Secretion

Renal Physiology

Sodium handling by the renal tubules

Mechanisms of Tubular Transport.

- There are three basic mechanisms:
 - 1- Active transport.
 - Primary active.
 - Secondary active: Co-transport. Counter transport.
 Passive transport.
 - **3- Pinocytosis.**

Tubular function

Reabsorption

 Moving substances from lumen through renal cells into the blood

Secretion

 Moving substances from blood (peritubular capillary) to the lumen

Type of Reabsorption

Transcellular reabsorption

 (Through the Cells)
 Primary active transport
 Secondary active transport
 Passive transport – Ion channels

 Para cellular reabsorption (Between the Cells)

Primary Active Transport.

- Primary active transport utilizes metabolic energy directly.
- Example: Na⁺ reabsorption across PCT.
- At basolateral border:
- Na⁺-K⁺ ATPase creates negative potential of about -70 mV and low intra cellular Na⁺ level.
- At the luminal border:
- Na⁺ diffuses from the tubular lumen into the cells according to electrochemical gradient.

Secondary Active Transport.

- Does not require energy directly from ATP.
- It utilizes the energy resulting from the work of primary active transport system.
- Cotransport:
- The reabsorption of a substance is linked to the passive reabsorption of another.
- The 2 substances bind to a specific carrier.
- One substance is transported down its gradient and the other against its chemical gradient.

Example

- Na⁺- glucose co-transport.
- **At luminal border:**
- Glucose and Na⁺ bind to common carrier SGLT-2.
- At basolateral border:
- **Glucose is carried by GLUT-2.**

Counter-transport:

Secondary active secretion of H⁺ together with Na⁺ reabsorption by a Na⁺- H⁺ counter transport protein in the brush border of the luminal membrane of the proximal convoluted tubule.

Active Transport.

2- Passive Reabsorption:

Chloride:

- occurs through paracellular pathway following Na⁺ reabsorption which creates negativity inside the tubular lumen.
- <u>Water</u> (osmosis):
- **Occurs paracellulary following solute.**

<u>Urea</u>:

 H₂O reabsorption leads to urea concentration in the tubular fluid creating a gradient for its absorption, 50% of urea is reabsorbed.

Passive Water Reabsorption.

Na⁺ Handling by Renal Tubule.

- Large amounts of Na⁺ are filtered through the glomeruli.
- Na⁺ is reabsorbed out of all portions of the tubule except the thin descending limb of loop of Henle.
- 96 99% of filtered Na⁺ is reabsorbed.
- 90% of the Kidney energy consumption is due to active Na⁺ transport which depends on Na⁺-K⁺ pump.

Copyright ©2006 by The McGraw-Hill Companies, Inc. All rights reserved.

Reabsorption of Na⁺ is coupled with:

- **Reabsorption of most solutes by:**
- Secondary active transport as glucose, amino acids , sulphates, phosphate and organic acids (lactate and citrate) or
- Diffusion (Cl⁻ and urea).
- H₂O osmosis.
- H⁺ & K⁺ secretion & HCO₃⁻ reabsorption

Key:

- Secondary active transport
 - = Passive transport (diffusion)
 - = Protein carrier
 - = Ion channel

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Na⁺ Reabsorption in Different Segments

PCT

- 65% of filtered load.
- Although it is an active transport, it has no tubular maximum.
- Because the rate of its pumping outside at the basolateral border is greater than the rate of diffusion at luminal border.

Na⁺ Reabsorption at PCT

BICARBONATE REABSORPTION IN THE PROXIMAL TUBULE

- Filtered HCO₃ is titrated by secreted protons to CO₂ and water.
- Hydration of CO₂ in the cell produces protons for secretion and HCO₃. The HCO₃ is transported into the ISF by a Na-HCO₃ cotransporter in a ratio of 3 HCO₃:1Na.
- Thus one HCO₃ disappears C from tubular fluid and another appears in the ISF.
- The net effect is reabsorption of bicarbonate.

Loop of Henle

- a) Thin descending (permeable to HO₂).
- No Na⁺ reabsorption as there is no Na⁺ transport proteins or channels.
- Only H₂O reabsorption.
- = Concentrating segment
- b) Thin ascending (impermeable to HO_2). Passive reabsorption of NaCI. Impermeable to H_2O
- = diluting segment.

Thick ascending & early distal

- **25%** of Na⁺, K⁺& CL⁻ are reabsorbed by cotransport . (Na⁺- K⁺- 2 CL⁻)
- Most of reabsorbed K⁺ fluxes back to the lumen via K⁺ channels.
- This serves 2 purposes:
- **Ensure sufficient K**⁺ for the cotransporter.
- Results in net positive potential in the lumen that helps paracellular reabsorption of several cations, Na⁺, K⁺, Ca⁺⁺& Mg⁺⁺

SALT TRANSPORT IN THE THICK ASCENDING LIMB

PRIMARY TRANSPORT MECHANISM: Na-K-ATPase in basolateral membrane. SECONDARY TRANSPORT SYSTEM: Na-K-2CI cotransporter in apical membrane, electrically neutral, driven by Na and CI gradients.

Thick ascending Loop of Henle.

Bartter's syndrome

Cause

Defect in the Na⁺- K⁺ -2 CL⁻ cotransporter in the luminal membrane of the thick ascending limb \rightarrow loss of Na⁺, K⁺, CL⁻ and Ca⁺⁺ in urine.

Manifestations:

- Renal salt wasting.
- Volume depletion.
- Hypercalcuria.
- Hypokalemia.
- Metabolic alkalosis.

Early distal tubule

- Called cortical diluting segment. Reabsorption of NaCI by Na⁺- Cl⁻ cotransporter.
- Impermeable to water, thus the tubular fluid is further diluted.

Early DCT.

Late distal & collecting duct

<10% of Na⁺ is reabsorbed at the principle cells as counter transport with K⁺ under effect of a dosterone.

Mechanism

- Na⁺ is extruded via Na⁺ -K⁺ pump at the basolateral membrane.
- Na⁺ diffuses into the principal cell through Na⁺ channels at the apical membrane, while K⁺ diffuses into the tubular lumen down its concentration gradient.
- CL⁻ accompanies Na⁺ paracellularly.
- Under the effect of aldosterone

Na REABSORPTION IN THE COLLECTING TUBULE

- Na is reabsorbed by the principal cells in the collecting tubule.
- The primary engine: Na-K ATPase in the basolateral membrane.
- The Na pump in conjunction with K channels establishes an electrochemical gradient for Na across the apical membrane.
- That gradient drives Na into the cell via a Na channel.
- Na reabsorption here is stimulated by aldosterone.
- CI reabsorption, via the paracellular pathway, is driven by the lumennegative electrical gradient.

Late distal and Collecting duct.

Na REABSORPTION IN THE COLLECTING TUBULE

- Na is reabsorbed by the principal cells in the collecting tubule.
- The primary engine: Na-K ATPase in the basolateral membrane.
- The Na pump in conjunction with K channels establishes an electrochemical gradient for Na across the apical membrane.
- That gradient drives Na into the cell via a Na channel.
- Na reabsorption here is stimulated by aldosterone.
- CI reabsorption, via the paracellular pathway, is driven by the lumennegative electrical gradient.

Renal Physiology

Glucose handling by the renal tubules

Glucose Reabsorption

Normally all filtered glucose is reabsorbed at the early portion of PCT.

Mechanism:

Secondary active transport with Na.⁺

At luminal border

- Common carrier with Na⁺, SGLT2
- Can be blocked by
- **Oubain** which blocks Na⁺ -K⁺ ATPase and
- Phlorhizin which competes for the carrier.

At basolateral border

Glucose is carried by facilitated diffusion down chemical gradient by carrier GLUT2.

Secondary active transport of glucose.

Tubular transport maximum for glucose (T_{mG}) Definition:

Maximum amount of glucose in (mg) that can be reabsorbed by renal tubules /min.

Renal threshold for glucose

- Plasma level at which glucose starts to appear in urine.
- Value:
- 200mg/dL in arterial blood.
- 180mg/dL in venous blood.

Renal Glucose Handling

Schematic representation of the typical titration curve for renal glucose reabsorption in humans. Silverman M, Turner RJ. Handbook of Physiology. Section 8: Renal Physiology. Oxford, UK: Oxford University Press: 1992:2017-2038.^[4]

Glycosuria

- Excretion of glucose in urine in considerable amounts.
- **Causes:**
- **Diabetes mellitus,**
- **Blood glucose exceeds renal threshold.**
- Renal glycosuria,
- Normal blood glucose but decreased renal threshold below 180 mg%. T_m is markedly decreased in renal glycosuria. Due to congenital defects.

Renal Physiology

Potassium handling by the

renal tubules

K⁺ is the most abundant cation in the body

precise control mechanisms

Plasma [K⁺] 3.5-4.8 mmol/L

Regulates: **membrane potentials** in excitable cells

K⁺ concentrations in equilibrium \rightarrow Equal diffusion into and out of cell

■ \square EC K⁺ \rightarrow \square diffusion of K⁺ out of cell \rightarrow cells hyperpolarized

■ \frown EC K⁺ \rightarrow \downarrow diffusion of K⁺ out of cell \rightarrow cells partially depolarized

K⁺ uptake into the cells is due to:

■ Insulin 1 after high K⁺ meal.

Insulin + glucose to treat hyperkalaemia.

Adrenaline via β_2 receptors β blockers \uparrow plasma K⁺ after a meal or an exercise \Im .

Aldosterone

Alkalosis H⁺ is "*exchanged*" for extracellular K⁺.

During Acidosis

During Alkalosis

† Plasma K⁺ levels can be due to:

Acidosis: ICF K⁺ is "<u>exchanged</u>" for extracellular H⁺.

■ ① Osmolality → K⁺ moves out secondary to H₂O movement out of cells

■ Exercise → loss of K⁺ from muscles

■ Cell lysis → release of cellular contents

Renal excretion of potassium

K⁺ reabsorption at PCT does not respond to changes in K⁺ balance and are not physiologically regulated.

Major Factors and Hormones Influencing K⁺ Excretion

- **Homeostatic:** Keep K⁺ Balance Constant
- Plasma [K⁺] (
 [†] K⁺ excretion)
- Aldosterone (
 K⁺ excretion)

Pathophysiological: Displace K⁺ Balance

- Flow rate of tubule fluid (
 K⁺ excretion)
- Acid-base balance

Plasma [K⁺]

Hyperkalaemia stimulates secretion of K⁺ within minutes

How?

- **1. Stimulates Na/K-ATPase** $\rightarrow \uparrow K^+$ uptake (*basolateral*) $\rightarrow \uparrow$ electrochemical gradient.
- **2.** ↑ **permeability** to K⁺ (*apical*).
- **3.** \uparrow aldosterone \rightarrow \uparrow secretion of K⁺.

Hypokalaemia produces an opposite effect

Aldosterone

▲ K⁺ secretion by:

1. \uparrow Na/K ATPase → \uparrow Na⁺ reabsorption → \uparrow K⁺ secretion.

2. \uparrow Na+ reabsorption (\uparrow ENaC) → -ve lumen potential → \uparrow K⁺ secretion

3. ↑ permeability of apical membrane →
↑ K⁺ secretion

Conn's syndrome (↑ aldo) → hypokalaemia

Addison's disease (↓ aldo) → hyperkalaemia

Plasma K⁺

(hyperkalemia)

Arterial pressure

Acid-base balance

Acidosis inhibits K⁺ secretion in principal cells by INHIBITING ():

- Na/K ATPase → ↓ K⁺ uptake from blood →
 ↓ conc. gradient for K⁺ efflux into the lumen.
- K⁺ channels (*apical*)
 → ↓ K⁺ secretion
 directly →
 hyperkalemia.

Alkalosis has the opposite effect, promoting K⁺ secretion and <u>hypokalemia</u>.

