

Objectives

- Identify and describe the role of the sensors and effectors in the renal regulation of body fluid volume.
- Describe the role of the kidney in regulation of body fluid volume & osmolality.

Identify the site and describe the influence of aldosterone on
 reabsorption of Na+ in the late distal tubules.

 Understand the role of ADH in the reabsorption of water and urea

Black: in male AND female slides Red : important Pink: in female slides only Blue: in male slides only Green: Notes Gray: extra information

....

Editing file

Introduction

Q / Why does the body regulate ECF volume by adjusting body Na⁺ content?

Na⁺ is the most abundant solutes in the ECF & when we move Na from one compartment to another, water moves with it. This is due to the osmotic gradient created by the movement of Na.

Electrolyte composition of body fluids

ECF volume regulation

1.What does the body sense?

What is the goal of effective circulation?

To maintain constant perfusion so that the organs receives enough nutrients and O_2

Effective circulating Volume

2.What are the Sensors?

Atrial Natriuretic Peptide (ANP)

LECV

↑ECV

- ANP promotes natriuresis (Na+ excretion)
- Secreted by atrial myocytes in response to stretch

Male slides only

Antidiuretic hormone (ADH)/Vasopressin

Main functions of AD<u>H</u>:

 Major mechanism for causing sensation of thirst is an "intracellular dehydration" mainly due to ↑Osmolality of extracellular fluid

H₂O permeability & control of intake

The permeability of the distal tubule to H_2O is regulated by ADH for example:

H₂O diuresis and Cause ↓permeability in distal tubule and produce dilute urine

Cause $\uparrow H_2 O$ reabsorption resulting in
concentrated urine (max of 1200 mOsm)

Other hormones that control of Na reabsorption

1 Glucocorticoids

2 Sex hormones

- Have weak mineralocorticoid activity
- Estrogen[↑] Na⁺ reabsorption

3 PGE 2

↑ Na⁺ excretion through:
 Inhibit apical Na⁺ channels
 Inhibit Na⁺-K⁺ ATPase
 (Action similar to ANP and opposite to aldosterone)

Doctor notes

 under physiologic conditions, the body regulates plasma volume & plasma osmolarity independently because, plasma volume is regulated by: Na+ and the main effector is: RAAS, sympathetic and ANP while the plasma osmolarity is regulated by: water and the main effector is: ADH and thirst.

 under pathological conditions, severe derangements in fluid & electrolyte balance may challenge the system by presenting two conflicting changes in osmolarity and volume. For example: someone has hypotension and hypo-osmolarity at the same time, Hypo-osmolarity is corrected by: inhibit ADH → water loss → severe hypotension "so its getting worse".

• In general, if there is two **conflicting** changes the body defends **volume** at the expense of osmolarity. "so volume is more important than osmolarity, because it determines the perfusion".

Summary

Summary

- Identify and describe the role of the sensors and effectors in the renal regulation of body fluid volume.
- The body sense the Effective circulating volume ECV.
 There are three effectors depend on ECF:

- Describe the role of the kidney in regulation of body fluid volume & osmolality.
- The kidney regulates osmolarity by adjusting total body water(water Excretion). The kidney regulates volume by adjusting total body Na+ content (Na+ Excretion).
- Identify the site and describe the influence of aldosterone on reabsorption of Na+ in the late distal tubules.
- ◆ ↑Na+ reabsorption in exchange with K or H excretion at the P cells of DCT & CD.
- What is the role of ADH in the reabsorption of water and urea?
 Water deficit → ↑extracellular osmolarity → osmoreceptors will fire →↑ADH secretion → ↑plasma ADH → ↑H2O permeability in DT and CD → ↑H2O reabsorption → ↓H2O excreted

MCQ & SAQ

Q1: The most abundant extracellular **Q2:** What is the major route for cation is excretion of sodium

- **A.** Potassium
- **B.** Chloride
- **C.** Sodium
- **D.** Phosphate

Q4: All of the following are actions of angiotensin II EXCEPT

- **A.** ↑Reabsorption of Na⁺
- **B.** ↑ Thirst
- **C.** ↑ Aldosterone
- **D.** Vasodilatation

A. GI loss **B.** Kidnev **C.** Sweat **D.** Lungs

Q3: All of the following are high pressure sensors EXCEPT

A. Carotid sinus **B.** Aortic arch **C.** Cardiac atria **D.** Juxtaglomerular apparatus

2: B ל: D

3:5

2: B J:L

guzmer key:

Q5: Which of the following is a low Q6: Osmoreceptors are located in pressure receptor **A.** Supraoptic nuclei A. Renal afferent arterioles **B.** Anterior hypothalamus **C.** Posterior pituitary **B.** Pulmonary vasculature **D.** Adrenal cortex

1- What are the fluid compartments of the body?

2- What happens to a person who has excessive diarrhea and is in dehydrated state?

C. Carotid sinus

D. Aortic arch

3- When does edema occur?

4- What happened if a person is take high amount of water in short time?

A1: Intracellular (inside the cells): contain most of the fluid Extracellular (outside the cell): contain fluid in the: 1. Blood (vascular) 2. Interstitium (between cells)

A2: Increase Sodium concentration \rightarrow Increase extracellular osmolarity that surrounding the osmoreceptors in the hypothalamus \rightarrow movement of water from intracellular (osmoreceptors cells) to extracellular \rightarrow stimulation of osmoreceptors and send signals to posterior pituitary in hypothalamus \rightarrow release ADH also called (arginine vasopressin)

A3: When there is an inappropriate secretion of ADH that will lead to hypo- osmolar condition of ECF and sodium concentration will be 120 mEq\L and below.

A4: Decreased Sodium concentration \rightarrow decrease extracellular osmolarity that surrounding the osmoreceptors in the hypothalamus \rightarrow movement of water from extracellular to intracellular (osmoreceptors cells) — stimulation of osmoreceptors and send signals to posterior pituitary in hypothalamus \rightarrow decrease ADH

