Major Metabolic Pathways of Glucose and Glucose Transport

Clinical Chemistry Unit Pathology
Department
College of Medicine, KSU

Objectives

By the end of the lecture, students are expected to:

- Define a metabolic pathway.
- Describe the general metabolic pathways for glucose (production and utilization)
- Briefly describe the HMP
- Recognize the mechanisms of glucose transport

Metabolic Pathway

Definition Site: Cellular (tissue) and Subcellular Reactions Rate-limiting enzyme(s) Regulatory mechanism(s): Rapid, Slow, short-term long-term Covalent **Allosteric** Induction/repressi modification on

Metabolic Pathways of Glucoseproduction and utilization

Metabolic Pathways of Glucosecatabolic and anabolic

Catabolic cycles
Glycolysis (Mainly)
Krebs (Mainly)
Glycogenolysis
HMP

Anabolic cycles Gluconeogenesis

Glycogenesis

Glycolysis

Oxidation of glucose to provide energy.

Pyruvate is the end product of glycolysis in cells with mitochondria and an adequate supply of oxygen- aerobic glycolysis

In absence of oxygen and in cells that lack mitochondria, the end product is lactate- anaerobic glycolysis

Glycogenesis and Glycogenolysis

Glycogenesis:

Synthesis of glycogen from glucose Mainly liver and muscle, Cytosol

Glycogenolysis

Degradation of glycogen into glucose Mainly liver and muscle, Cytosol

Gluconeogenesis

Synthesis of glucose from non-carbohydrate precursors.

The precursors could be lactate, pyruvate, glycerol and alpha-keto acids. It requires both mitochondria and cytosolic

enzymes

Liver and kidney

Hexose Monophosphate shunt(HMP) or Pentose Phosphate Pathway (PPP)

HMP shunt is an alternative pathway of glucose oxidation
It is not involved in the generation of energy
Around 10% of glucose is entered in this pathway
In liver and kidney, this percentage is upto 30%

Biomedical Importance

It has two main functions-

- Provides NADPH which is required for synthesis of fatty acids, steroid and some amino acids Detoxification of drugs by cytochrome p450
 - In scavenging the free radicals
- 2. Provides Pentoses
 - This pentose and its derivatives are useful in the synthesis of
 - Nucleic acids (DNA and RNA)
 - Nucleotides (ATP, NAD, FAD and CoA)

Tissue Distribution

Location- Cytosol
Liver
Lactating mammary gland
Adrenal cortex
Gonads
Adipose tissue
Erythrocytes to reduce glutathione
Lens and cornea

Phases of HMP Shunt

It has two phases-Oxidative phase Non-oxidative phase

Enzymes numbered above are: 1, 2) glucose 6-phosphate dehydrogenase and 6-phosphogluconolactone hydrolase, 3) 6-phosphogluconate dehydrogenase, 4) ribose 5-phosphate isomerase, 5) phosphopentose epimerase, 6 and 8) transketolase (coenzyme: thiamine pyrophosphate), and 7) transaldolase.

Phase 1- Oxidative pathway

Oxidative Phase

Glucose 6-phosphate

6-Phosphogluconolactone

6-Phosphogluconate

Ribulose 5-phosphate

Non-oxidative phase

G6PD- Glucose 6-Phosphate Dehydrogenase

Lactonase- 6 phosphogluconolactone hydrolase

6PGD- 6 phosphogluconate dehydrogenase

Phase 2- Non-oxidative a) Interconversion of pentoses

D-Ribulose 5-Phosphate
Phosphopentose
Isomerase

D-Ribose 5-phosphate

D-Ribose-1-P

D-Ribose-1,5-di-P

Phase 2- Non-oxidative

D-Ribulose-5-P Phosphopentose Epimerase

D-Xylulose-5-Phosphate

Phase 2- Non-oxidative a) Conversion of pentose phosphate to hexose phosphates

- 2 Particular Enzymes are required:
- 1)TRANSKETOLASE
- 2)TRANSALDOLASE

Transketolation

Glyceraldehyde-3-Phosphate

Transaldolation

Sedoheptolose 7-P+G3P
Transaldolase

Fructose 6-Phosphate

Erythrose 4-Phosphate

Transketolation

Clinical Correlations

- G-6-PD deficiency results in:
- ▶ Heamolytic Aneamia
- ▶ Neonatal Jaundice
- Kidney failure

Glucose Transport

Na+-Monosaccharide Cotransporter:

Against concentration gradient

Energy dependent

Carrier-mediated

Coupled to Na+ transport

Small intestine, renal tubules & choroid plexus

Na+-Independent Facilitated Diffusion:

Down the concentration gradient

Energy Independent

Glucose Transporters (GLUT 1-14)

Glucose Transport: Facilitated Diffusion

Glucose Transporters

Tissue-specific expression pattern

GLUT-1 RBCs and brain

GLUT-2 Liver, kidney & pancreas

GLUT-3 Neurons

GLUT-4 Adipose tissue & skeletal

muscle

GLUT-5 Small intestine & testes

GLUT-7 Liver (ER-membrane)

Functions:

GLUT-1, 3 & 4 Glucose uptake from blood

GLUT-2 Blood & cells (either direction)

GLUT-5 Fructose transport

Take Home Messsage

There are multiple pathways for glucose that can be grouped in to catabolic (utilizing glucose) or anabolic (producing glucose)
Glycolysis is the major metabolic pathway of glucose breakdown to provide energy

Take Home Messsage - HMP

Alternative pathway for glucose oxidation but not meant for producing energy
Has two phases- oxidative and non-oxidative
During oxidative phase, glucose-6-P is oxidized with generation of 2 moles of NADPH, and one mole of pentose phosphate, with liberation of CO2

During non-oxidative phase, pentose phosphate is converted to intermediates of glycolysis

References

Lippincott's Illustrated Reviews- Biochemistry 6th Edition- pages: 96-97,117,126,128,145-147 http://www.biochemden.com/the-hexose-monophosphate-shunt/