Oxidative Decarboxylation and Krebs Cycle

Objectives: Oxidative Decarboxylation

By the end of this lecture, students are expected to:

- Recognize the various fates of pyruvate
- Define the conversion of pyruvate to acetyl CoA
- Discuss the major regulatory mechanisms for PDH complex
- Recognize the clinical consequence of abnormal oxidative decarboxylation reactions

Objectives: Krebs Cycle

By the end of this lecture, students are expected to:

- Recognize the importance of Krebs cycle
- Identify various reactions of Krebs cycle
- Define the regulatory mechanisms of Krebs cycle
- Assess the energy yield of PDH reaction and Krebs cycle's reactions

Fates of Pyruvate

PLP = Pyridoxal Phosphate

Oxidative Decarboxylation of Pyruvate

PDH Complex: Covalent Regulation

PDH Reaction: Clinical application

- 1. Deficiencies of thiamine or niacin can cause serious CNS problems. WHY?
 - Brain cells are unable to produce sufficient ATP if the PDH complex is inactive.
- 1. Wernicke-Korsakoff (encephalopathy-psychosis syndrome) due to thiamine deficiency, may be seen especially with alcohol abuse.
- 2. PDH complex deficiency is the most common biochemical cause of congenital lactic acidosis.

Krebs Cycle

The tricarboxylic acid cycle (Krebs) shown as a part of the essential pathways of energy metabolism.

CoA = coenzyme A.

Tricarboxylic Acid Cycle: Krebs Cycle

- Final common pathway for oxidation
- Exclusively in mitochondria
- Major source for ATP
- Mainly catabolic with some anabolic features
- Synthetic reactions (anabolic features):

Glucose from amino acids

Nonessential amino acids

Fatty acids

Heme

Krebs Cycle Reactions (1)

Formation of α -ketoglutarate from acetyl coenzyme A (CoA) and oxaloacetate.

NAD(H) = Nicotinamide adenine dinucleotide.

Krebs Cycle Reactions (2)

Succinate Thiokinase

Substrate-Level Phosphorylation

Formation of malate from α -ketoglutarate.

NAD(H) = nicotinamide adenine dinucleotide GDP = guanosine diphosphate; P = phosphate FAD(H2) = flavin adenine dinucleotide.

Krebs Cycle Reactions (3)

Formation (regeneration) of oxaloacetate from malate.

NAD(H) = nicotinamide adenine dinucleotide

Krebs Cycle: Energy Yield

Number of ATP molecules produced from the oxidation of one molecule of acetyl coenzyme A (CoA) using both substrate-level and oxidative phosphorylation.

Krebs Cycle: Energy Yield

Energy-producing reaction	Number of ATP produced
$3 \text{ NADH} \longrightarrow 3 \text{ NAD}^+$	9
$FADH_2 \longrightarrow FAD$	2
$GDP + P_i \longrightarrow GTP$	1
12 ATP/acetyl CoA oxidized	

Number of ATP molecules produced from the oxidation of one molecule of acetyl coenzyme A (CoA) using both substrate-level and oxidative phosphorylation.

Net ATP Production by Complete Glucose Oxidation

Aerobic glycolysis:

8 ATP

Oxidative decarboxylation:

2 X 3 =

6 ATP

Krebs cycle:

 $2 \times 12 =$

24 ATP

Net:

38 ATP

Regulation of Oxidative Decarboxylation and Krebs Cycle

- PDH complex and the TCA cycle are both up-regulated in response to a decrease in the ratio of
 - ATP:ADP
 - NADH:NAD+
- TCA cycle activators are:
 - ADP
 - Ca2+
- TCA cycle inhibitors are:
 - ATP
 - NADH

Take Home Message

- Pyruvate is oxidatively decarboxylated by PDH to acetyl CoA inside the mitochondria
- Krebs cycle:
 - Final common pathway for the oxidation of carbohydrates, fatty acids and amino acids
 - Occurs in the mitochondria
 - Aerobic
 - Mainly catabolic, with some anabolic reactions
- The complete oxidation of one glucose molecule results in a net production of 38 ATP molecules

Reference

Lippincott Illustrated Review of Biochemistry, 6th edition, 2014, Unit 2, Chapter 9, Pages 109-116.