Molecular biology (2)

(Foundation Block)

Objectives

By the end of this lecture, the students should be able to:

- To understand DNA replication
- To know the transcription of genetic material into messenger RNA
- To get an idea about the translation of mRNA into a functional protein.

DNA is the genetic material

Therefore it must:

- 1. Replicate faithfully.
- 1. Have the coding ability to produce proteins for all cellular functions.

Features of Eukaryotic DNA Replication

Semiconservative with respect to parental strand:

Daughter DNA molecules contain one parental strand and one newly-replicated strand.

Bidirectional with multiple origins of replication.

Primed by short stretches of RNA. Semi-discontinous

Semidiscontinuous DNA replication. In DNA replication, both daughter strands (leading strand red, lagging strand blue) are synthesized in their 5' ® 3' directions

Proteins involved in DNA Replication

DNA Helicase.

Single-stranded DNA binding proteins.

DNA Primase.

DNA polymerases (5 types: α ; β ; γ ; δ ; ϵ).

DNA ligase.

Topoisomerases:

Topoisomerase I.

Topoisomerase II.

Telomerases

Steps in DNA Replication

- Helicase protein binds to DNA sequences called origins and unwinds DNA strands.
- Single-Stranded binding proteins prevent single strands from rewinding.
- Primase protein makes a short segment of RNA primer complementary to the DNA.

Exonuclease activity of **DNA** polymerase removes RNA primers

The central dogma of Molecular Biology

A portion of DNA, called a gene, is transcribed into RNA.

RNA is translated into proteins.

Transcription (mRNA synthesis)

- A portion of DNA (a gene) is transcribed into messenger RNA (mRNA).
- Only one of the DNA strands is transcribed (antisense strand).
- The RNA polymerase II is responsible for this process.
- The direction of transcription is 5' ? 3'.

Steps of mRNA synthesis

- Chain initiation:
 - RNA polymerase II binds to promoter region of DNA to start transcription.

Steps of mRNA synthesis

- Chain elongation:
 - A portion of DNA template unwinds (opens) at the point of RNA synthesis.
 - This forms a short length of RNA-DNA hybrid.

Post-transcriptional modification

• Capping: Addition of a methylated guanine nucleotide at 5' end of mRNA

Function:

- To prevent mRNA degradation by exonucleases.
- It helps the transcript bind to the ribosome during protein synthesis.
- Polyadenylation: Addition of a poly(A) tail (a highly conserved AAUAA sequence) at 3' end of mRNA.

Functions:

- To protect the mRNA from degradation
- For ribosomal RNA recognition
- Intron removal for releasing mature mRNA from nucleus.

The central dogma of Molecular Biology

A portion of DNA, called a gene, is transcribed into RNA.

RNA is translated into proteins.

Translation (Protein synthesis)

- A process of protein synthesis from mRNA
- mRNA has genetic codes for amino acids present in proteins.
- The genetic code is a dictionary that identifies the correspondence between a sequence of nucleotide bases and a sequence of amino acids.
- Each individual word in the code is composed of three nucleotide bases (codons).

- 64 possible codons:
 - 61 codons specify 20 amino acids
 - One start codon (AUG)
 - 3 stop codons
 UAA, UAG and UGA

First position (5' end)	Second position				Third position (3' end)
	U	C	A	G	
U	UUU Phe	UCU	UAU Tyr	UGU Cys	U C
	UUA UUG Leu	UCA Ser UCG		UGA Stop UGG Trp	A G
C	CUU CUC CUA CUG	CCU CCC CCA	CAU His CAC CAA Gln	CGU CGC CGA	U C A G
A	AUU AUC Ile AUA AUG Met ^b	ACU ACC ACA ACG	AAU AAC AAA AAG	AGU AGC Ser AGA AGG Arg	U C A G
G	GUU GUC GUA Val GUG	GCU GCC GCA	GAU GAC Asp GAA GAG Glu	GGU GGC GGA GGG	U C A G

[&]quot;Nonpolar amino acid residues are tan, basic residues are blue, acidic residues are red, and nonpolar uncharged residues are purple.

^bAUG forms part of the initiation signal as well as coding for internal Met residues.

Components required for Translation

Amino acids.

Transfer RNA (tRNA).

Aminoacyl-tRNA synthetases.

mRNA.

Functionally competent ribosomes.

Protein factors.

ATP and GTP.

Steps in Protein Translation

Take home messages

- DNA is the genetic material, so it must replicate faithfully and have the coding ability to produce proteins for all cellular functions.
- Only one strand of DNA (antisense strand) is transcribed into mRNA.
- The synthesized mRNA is protected from the destruction and prepared for translation through post-transcriptional modification.
- mRNA transcription and protein synthesis processes are the same in both prokaryotic eukaryotic cells with some differences.

References

Lippincott's Illustrated reviews: Biochemistry 6th edition, Unit 6, chapters 29, 30 and 31, Pages 395-448.

Lippincott's Illustrated reviews: Cell and Molecular Biology, Unit 2, Chapters 7, 8 and 9, Pages 69-106.