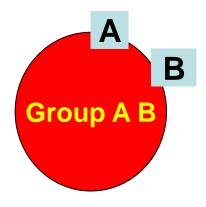
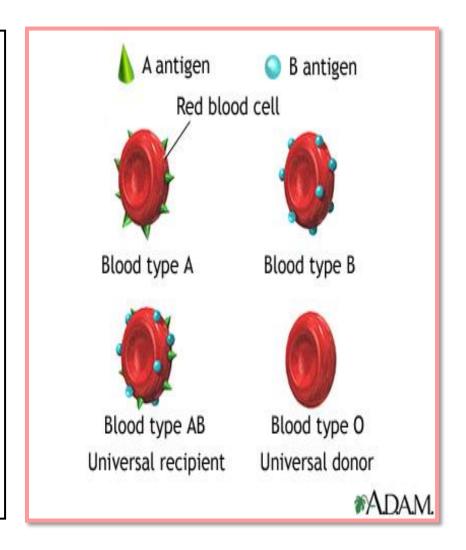

Blood Groups


Dr. Abeer Al-Ghumlas M.B.B.S., MSc. Physiology Ph-D. Physiology

Objectives

- At the end of this lecture student should be able to:
- 1. Describe ABO blood groups types
- 2. Recognize Agglutinin in plasma
- 3. Recognize transfusion reactions
- 4. Describe Rhesus blood groups.
- 5. Describe causes of hemolytic disease of the newborn.

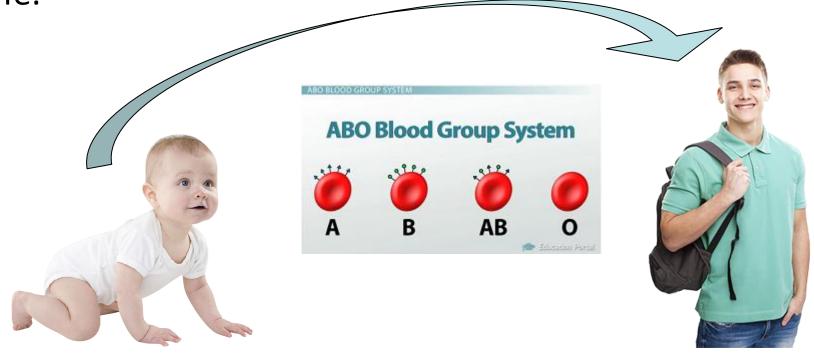

- Determined by:
- Antigens (glycoprotein) on the surface RBC, whether the red cells contain one, both or neither of the two blood antigens: A and B.
- Four main ABO groups:

A, B, AB, O

Clinically most significant:

A-B-O System

Rh (Rhesus) System



The ABO Blood groups

Agglutinogen	
A	
В	
A & B	
_	
	A B

☐A & B antigens:

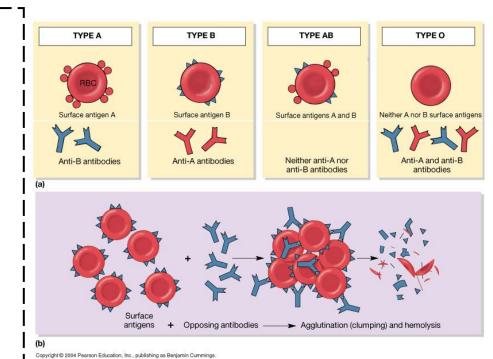
- They are genetically determined
- Appear in the early fetal life and remained unchanged throughout life.

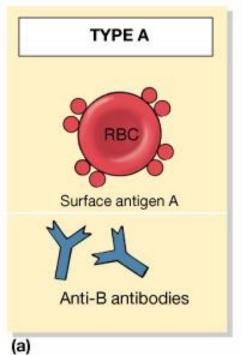
The ABO Blood groups

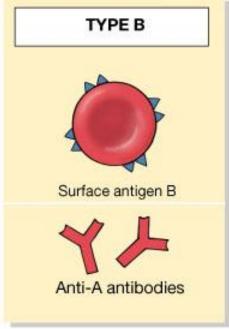
GroupBlood	Agglutinogen	Agglutinin
A	A	Anti-B
В	В	Anti-A
AB	A & B	-
0	_	Anti A+B

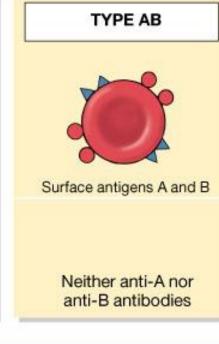
Definitions:

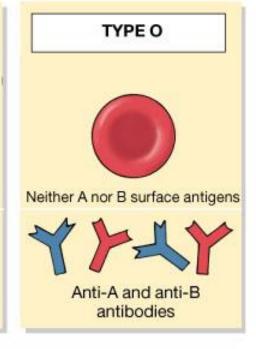
· Agglutinogens:

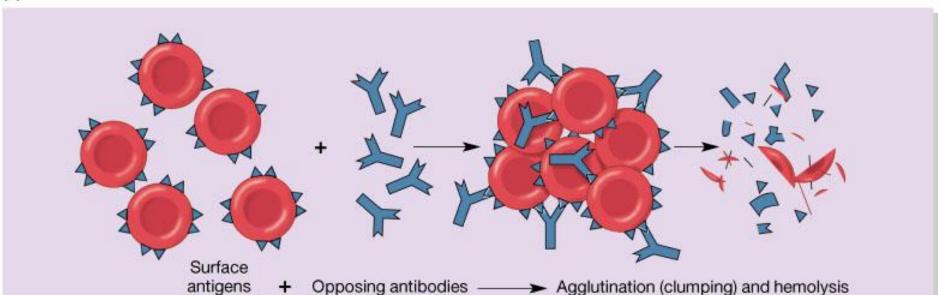

Blood group antigens on RBC membrane (A and B)


· Agglutinin:


The respective antibody to the antigen


•Agglutination:


Reaction between agglutinogen on RBC and the respective Ab.



➤ Anti-A & Anti-B are:

- They are naturally occurring antibodies.
- Not present at birth, appear 2-8/12
- Triggered by A & B antigens in food and bacteria

> Inheritance of blood groups

<u>allels</u>	<u>Genotypes</u>	<u>Phenotype</u> (Blood group)
A,B,O	AA, AO	A
	BB, BO	В
	00	Ο
	AB	AB

Locus of alleles responsible of ABO system is on long arm of chromosome 9

> Inheritance of blood groups

```
Blood group

A
AA, AO
BB, BO
O
AB
AB
Genotypes
AA, AO
BB, BO
AB
```

- Uses of genotypes:
- · Frequency of ABO has ethnic variation

· Sorting disputes in paternal dispute

The Question of paternity?

- Blood types can not be used to prove paternity
- Blood types can disprove paternity

2. The Question of paternity?

Nora blood (type A) and Ahmad blood (type B) Have a baby (blood type O) Can Ahmad be the father?

Phenotype	Possible genotype
Nora:A	AA or AO
Ahmad:B	BB or BO
Baby: O	00

Yes, he can be the father (Cant prove that he is the father but exclude)

The Question of paternity?

A woman who has blood (type A) gives birth to a daughter blood (type B). The possible father is blood type O. can he be the father?

	A	0		A	A
0	AO	00	0	AO	AO
0	AO	00	0	AO	AO

> Possible Blood group Genotypes

Parent	Α	В	0
Allele	-		
A	AA	AB	AO
В	AB	BB	ВО
Ο	AO	ВО	00

> The table shows the four ABO phenotypes ("blood groups") and the genotypes that give rise to them.

Blood Group	Antigens on RBCs	Antibodies in Serum	Genotypes
A	Α	Anti-B	AA or AO
В	В	Anti-A	BB or BO
AB	A and B	Neither	AB
0	Neither	Anti-A and anti-B	00

2. Rhesus (Rh) Blood Group

Rh Factors

• While studying Rhesus monkeys, <u>a certain</u> <u>blood protein</u> was discovered. This protein is <u>also present in the blood of some people</u>. Other people, however, do not have the protein.

A +	A-	B +	B-
AB+	AB-	0+	0-

Rh locus is on chromosome 1

2. Rhesus (Rh) Blood Group

Determined by:

Presence or absence of the Rhesus antigen (D) on the surface of RBC:

- Presence of D (individual is Rh+ve)
- Absence of D (individual is Rh-ve)

Rhesus antigens:

Dd, Cc, Ee Clinically most important is D

Do you know which blood group you belong to?

According to above blood grouping systems, you can belong to either of following 8 blood groups:

A Rh+	B Rh+	AB Rh+	0 Rh+
A Rh-	B Rh-	AB Rh-	0 Rh-

Antibodies ????

2. Rhesus (Rh) Blood Group

Anti-D antibody (agglutinin):

- -Is not naturally-occurring
- -Can be acquired by:

Transfusion of Rh-ve individual with Rh+ve blood

Rh-ve pregnancy with Rh+ve fetus

Importance of blood groups

1. Blood Transfusion.

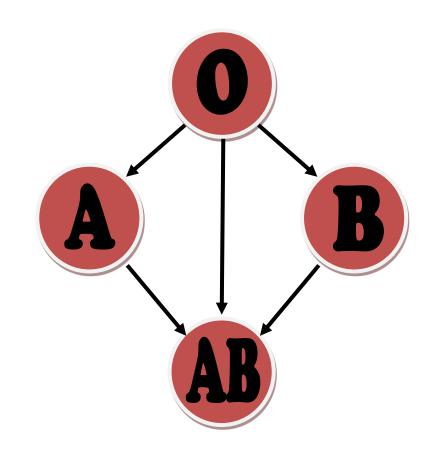
Transfusion reactions

(Incompatible Blood transfusion)

- If a person with blood group A transfused with blood of group B (contains anti-A in plasma)
- The anti-B in plasma of recipient blood group A will agglutinate the transfused cell (B)
- · Outcome:
- The clumped cells plug small blood vessels
- Sometimes causes immediate hemolysis

Transfusion reaction

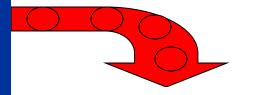
Blood Group	Antigens	Antibodies	Can give blood to	Can receive blood from
AB	A and B	None	AB	AB, A, B, O
A	A	В	A and AB	A and O
В	В	A	B and AB	B and O
0	None	A and B	AB, A, B, O	0


O-negative: May be given in emergency to patients with either A, B, AB and Rh negative or positive blood groups.

Who can give you blood?

People with **TYPE O** blood are called **Universal Donors**, because they can give blood to any blood type.

People with TYPE **AB** blood are called **Universal Recipients**, because they can receive any blood type.


Rh + → Can receive + or - Rh - → Can only receive -

BLOOD GROUP	ANTIGEN + ANTIBODY PRESENT	AS DONOR, IS	AS RECIPIENT, IS
A	ANTIGEN-A MAKES ANTI-B	COMPATIBLE WITH: A AND B	COMPATIBLE WITH: A AND O
B	ANTIGEN-B MAKES ANTI-A	COMPATIBLE WITH: B AND AB	COMPATIBLE WITH: B AND O
AB	MAKES NEITHER ANTI-A NOR ANTI-B	COMPATIBLE WITH:	COMPATIBLE WITH ALL GROUPS UNIVERSAL RECIPIENT
0	NEITHER A OR B MAKES BOTH ANTI-A AND ANTI-B	COMPATIBLE WITH: ALL GROUPS UNIVERSAL DONOR	COMPATIBLE WITH: O ONLY

Blood tests before transfusion

BLOOD BANK

Screening Blood components Prep Storage

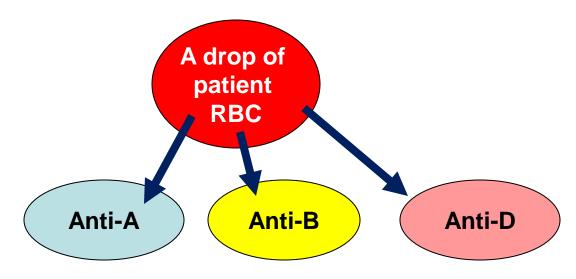
ISSUE

HOSPITAL PATIENTS

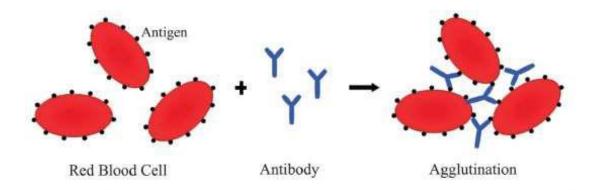
Blood tests before transfusion

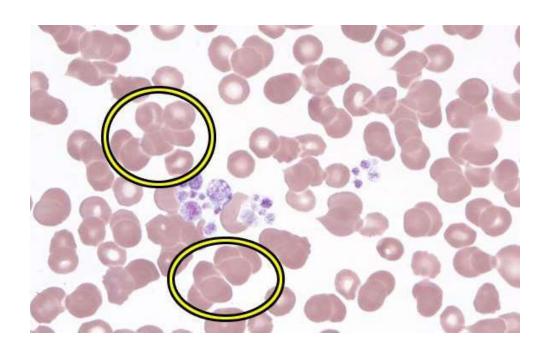
- 1. Blood group type of patient (recipient)
- 2. Cross-matching

3. Disease Screening:


- Hepatitis B and C virus
- HIV
- Syphilis
- Cytomegalovirus

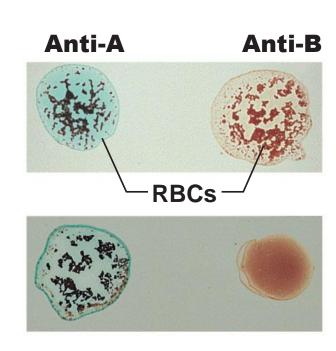
Blood tests before transfusion

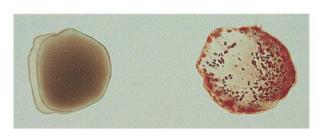

1. Blood group type of patient (recipient):

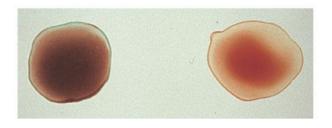

To determine red cell antigens in blood:

- -ABO typing
- -Rh typing

Look for agglutination



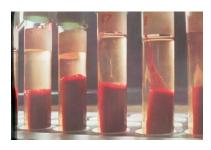

Type AB (contains agglutinogens A and B; agglutinates with both sera)


Type A (contains agglutinogen A; agglutinates with anti-A)

Type B (contains agglutinogen B; agglutinates with anti-B)

Type O (contains no agglutinogens; does not agglutinate with either serum)

Blood tests before transfusion


2. Cross-matching:

donor cells

recipients (patient) Plasma

Complications of blood transfusion

Complications of blood transfusion

1. Immune reaction:

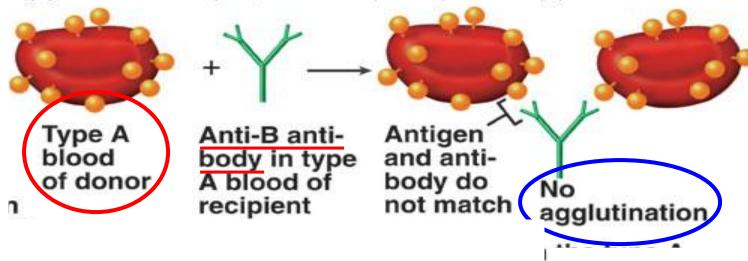
Incompatible blood transfusion leading to immediate or delayed reaction, fever, hemolysis, allergic reaction

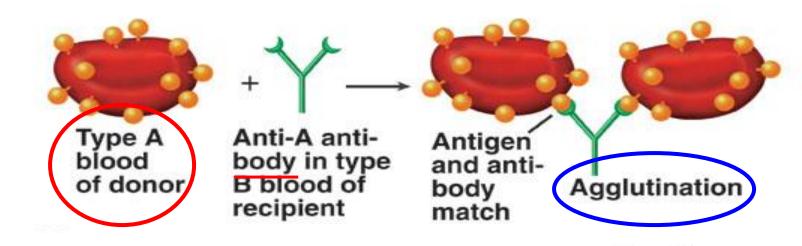
2. Transmission of diseases:

Malaria, syphilis, viral hepatitis & Aids

3. Iron overload:

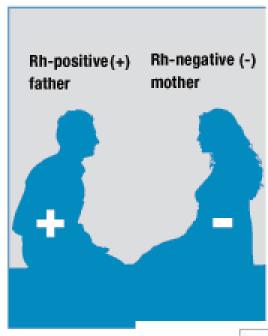
Due to multi-transfusion in case of sickle cell anemia and thalassemia

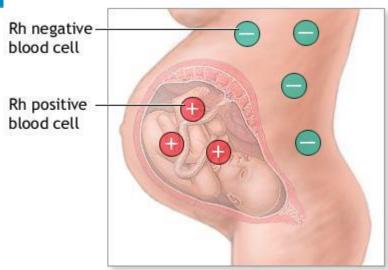


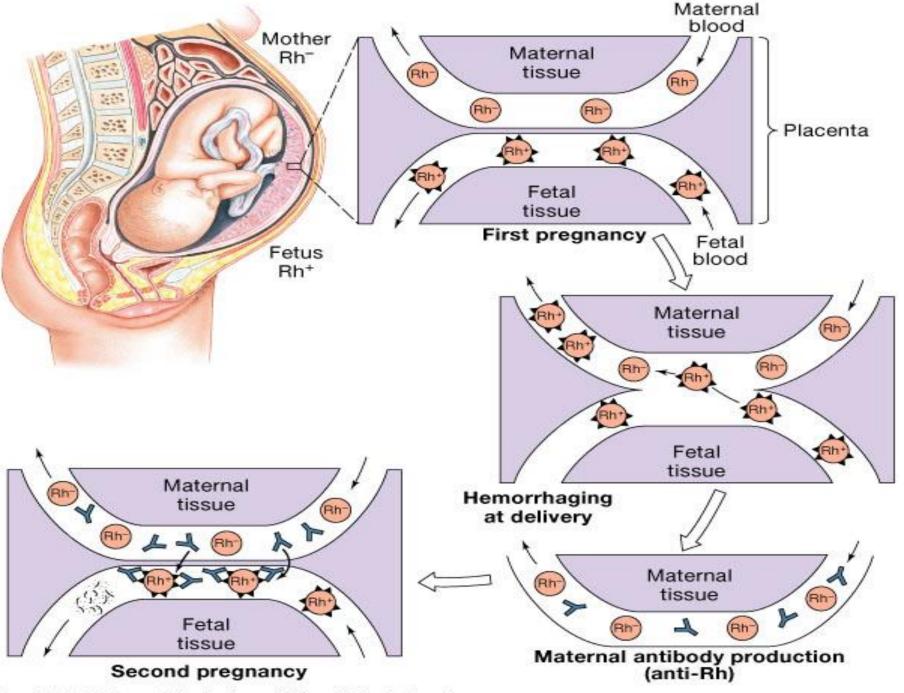


Agglutination Reaction

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

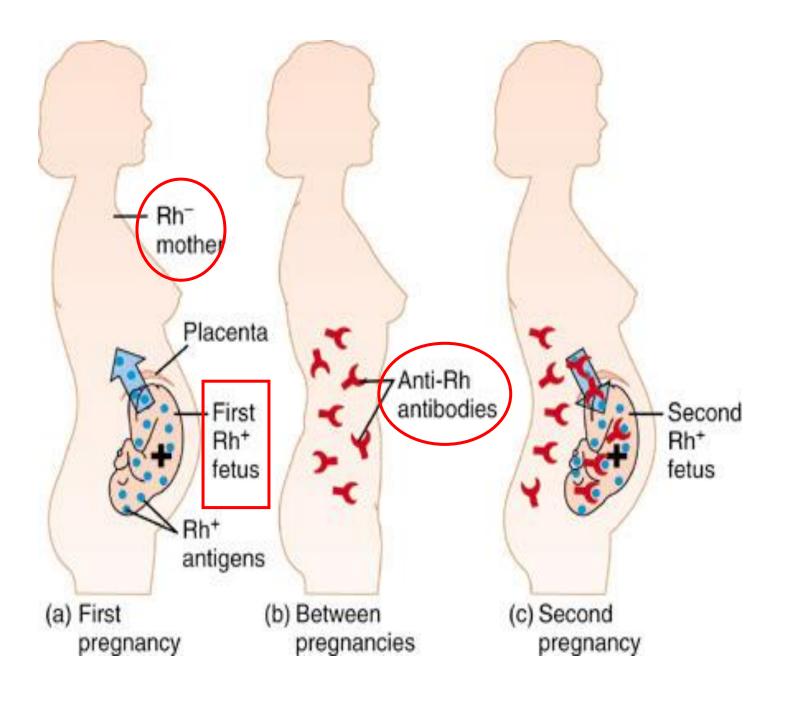

Importance of blood groups




- 1. Blood Transfusion.
- 2. Rh incompatibilty between mother and fetus

Rh incompatibilty between mother and fetus

Rh incompatibility between mother and fetus



Hemolytic Disease of the newborn

1. Hemolytic anemia:

- Kernicterus (mental retardation due to bilirubin deposition in the brain).
- If severe:
 treated with exchange
 transfusion: Replace baby
 blood with Rh-ve RBC
 (several times)
- Hydrobs fetalis (death in utero)

Rh incompatibilty between mother and fetus

- · Mother Rh-ve first Rh+ve baby:
- At delivery
 - Fetal Rh+ RBC cross to maternal blood
- The mother will develop Anti-D after delivery.
- · First child escapes & is safe

(If the mother is transfused with Rh+ve blood before, first child will be affected)

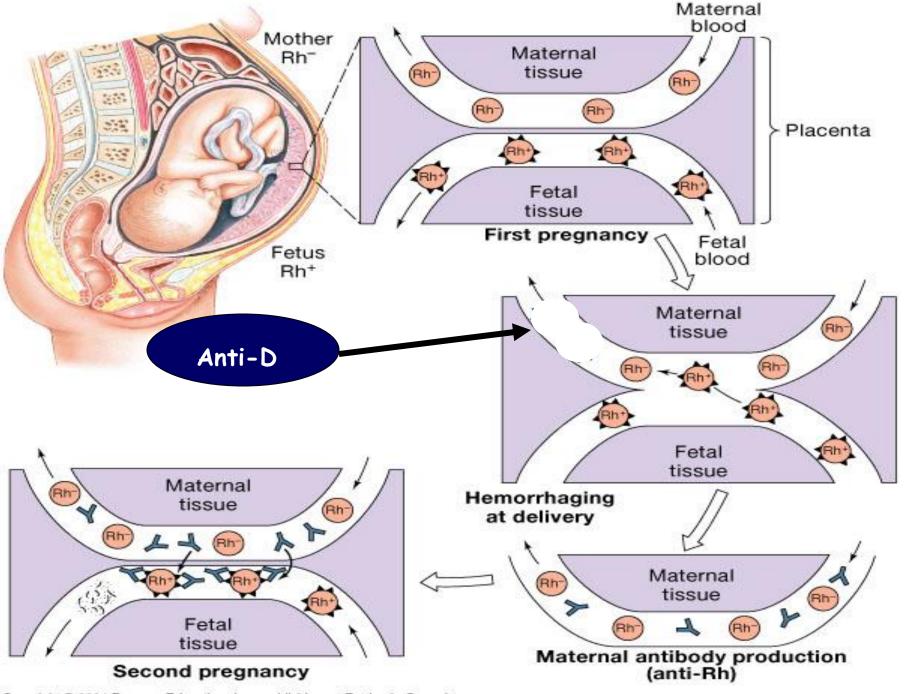
Rh incompatibilty between mother and fetus-cont.

- Second fetus
 - If Rh+ve
 - Anti-D crosses placenta and destroys fetal Rh+ RBC

Outcome?
 Hemolytic Disease of the newborn

Prophylaxis

Treatment??


Hemolytic Disease of the newborn

Prevention:

 Injecting the mother with anti-D immunoglobulin immediately after 1st childbirth

 Antenatal (during pregnancy) prophylaxis

Summary

وَمَنْ أَحْيَاهَا فَكَأَنَّمَا أَحْيَا النَّاسَ جَمِيعًا

