Introduction to medical virology

“Viral structure and Classification”

Dr. Abdulkarim Alhetheel
Assistant Professor in Microbiology Unit
College of Medicine & KKUH
OBJECTIVES

➢ General characteristics of viruses.
➢ Structure & symmetry of viruses.
➢ Classification of viruses.
➢ Steps of virus replication.
➢ Laboratory diagnosis of viral infections.
<table>
<thead>
<tr>
<th>characteristic</th>
<th>Parasite</th>
<th>Fungi</th>
<th>Bacteria</th>
<th>Virus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Type of nucleus</td>
<td>Eukaryotic</td>
<td>Eukaryotic</td>
<td>Prokaryotic</td>
<td>-----</td>
</tr>
<tr>
<td>Nucleic acid</td>
<td>Both DNA & RNA</td>
<td>Both DNA & RNA</td>
<td>Both DNA & RNA</td>
<td>DNA or RNA</td>
</tr>
<tr>
<td>Ribosomes</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>Absent</td>
</tr>
<tr>
<td>Mitochondria</td>
<td>Present</td>
<td>Present</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Replication</td>
<td>Mitosis</td>
<td>Budding or mitosis</td>
<td>Binary fission</td>
<td>Special</td>
</tr>
</tbody>
</table>
Characteristics of viruses

➢ Acellular organisms
➢ Tiny particles
 • Internal core
 • Protein coat
 • Some Vs have lipoprotein mb (envelope)
➢ Obligate intracellular organisms
➢ Replicate in a manner diff from cells
 (1V → many Vs)
Size; 20-300 nm
Viral Structure

1- Viral genome

2- Capsid

3- Envelope
1-Viral genome

DNA
- (Deoxyribonucleic acid)
 - All DNA Vs have ds except Parvoviruses
 - Single molecule

RNA
- (Ribonucleic acid)
 - All RNA Vs have ss except Reoviruses
 - Single / double
 - (+) polarity
 - (-) polarity

All Vs are haploid, except retroviruses are diploid
Viral structure

2-Capsid

- a protein coat
- Subunits (capsomeres)
- Genome (NA) + capsid
 - = nucleocapsid

Function:
- Protects NA
- Facilitates its entry into cell
Symmetry based on arrangement of capsomeres

- **Cubic symmetry**
 (Icosahedral)

- **Helical symmetry**

- **Complex symmetry**
Symmetry

based on arrangement of capsomeres

- \textit{1-Cubic symmetry (Icosahedral)}

[Images of Adenovirus and Herpes virus]

Capsomer

Nucleic acid

Adenovirus

Herpes virus
Symmetry based on arrangement of capsomeres

- **2- Helical symmetry**

- **3- Complex symmetry**
 - poxviruses

Elongated (filoviruses)

Pleomorphic (influenza v.)
Viral structure

3-Envelope

Lipoprotein mb
(host lipid, virus specific protein)

➢ During viral budding

➢ Envelope is derived from cell mb
 except herpesviruses from nuclear mb

➢ Enveloped Vs are more sensitive to
 heat, dry & other factors than nonenveloped Vs

➢ Glycoprotein attaches to host cell receptor
Viral proteins

- **The outer viral ps**
 - Mediate attachment to specific Rs
 - Induce neutralizing Abs
 - Target of Abs

- **The internal viral ps**
 - Structural ps (capsid ps of enveloped Vs)
 - Nonstructural ps (enzymes)
 - All ssRNA Vs (-) polarity have transcriptase (RNA dependent RNA polymerase) inside virions
 - RetroVs & HBV contain reverse transcriptase
Classification of viruses

➢ Type of NA
➢ The no. of strand
➢ The polarity of viral genome
➢ The presence or absence of envelope
➢ Type of symmetry
Medically Important Viruses

DNA
- Single-stranded
 - Nonenveloped
 - Icosahedral: Parvoviridae
 - Enveloped
 - Complex: Poxviridae
 - Icosahedral: Herpesviridae, Hepadnaviridae

RNA
- Nonenveloped
 - Icosahedral: Adenoviridae, Papovaviridae
Replication

➢ Adsorption (Attachment)
➢ Penetration
➢ Uncoating
➢ Synthesis of viral components
 • mRNA
 • Viral proteins
 • NA
➢ Assembly
➢ Release

Viral growth cycle
Adsorption

- Attachment site;
 - glycoprotein
 - folding in the capsid proteins.
Penetration

1-Fusion

- **Enveloped virus**
 - Binding of a virus to a host cell membrane receptor
 - Fusion of viral envelope with the host cell membrane
 - Nucleocapsid enters the cell

2-Endocytosis

- Enveloped viruses fuse with endosome mb.
- Nonenveloped viruses lyse, or pore em.
Replication

- Adsorption (Attachment)
- Penetration
- Uncoating

Release of viral genome - cytoplasm
- nucleus
Synthesis of viral components

- mRNA
 - Viral genome transcription mRNA
 - +ssRNA acts directly

- Viral proteins
 - mRNA translation viral proteins
 - cell ribosome - enzymes
 - - structural ps

- replication of viral genome
Replication

➢ Adsorption (attachment)
➢ Penetration
➢ Uncoating
➢ Synthesis of viral components
 • mRNA
 • Viral proteins
 • NA

➢ Assembly

\[NA + V. \text{ proteins} = \text{Virions} \]

➢ Release
Release

➢ 1-Budding
(enveloped Vs)
-cell mb*
-nuclear mb
(herpesVs)

➢ 2- Cell lysis
or rupture of the cm
(nonenveloped Vs)
laboratory diagnosis of viral infections

➢ Microscopic examination.
➢ Cell culture.
➢ Serological tests.
➢ Detection of viral Ag.
➢ Molecular method.
Microscopic examination

- **Light microscopy**, Histological appearance
 Ex. Inclusion bodies

- **Electron microscopy**;
 - Morphology & size of virions
 - Ex. Diagnosis of viral GE such as rota, adenoviruses.
 Diagnosis of skin lesion caused by herpes, or poxviruses.
 - It is replaced by Ag detection & molecular tests

Owl’s eye (CMV)
Electron micrographs

Rotavirus

Adenovirus

Herpesvirus

Poxvirus
Virus cultivation

- Laboratory animals
- Embryonated eggs
- Cell culture
Cell culture

<table>
<thead>
<tr>
<th>Type</th>
<th>No of sub passages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary C/C</td>
<td>1 or 2</td>
</tr>
<tr>
<td>Diploid C/C [semi continuous]</td>
<td>20 to 50</td>
</tr>
<tr>
<td>Continuous cell line</td>
<td>Indefinite</td>
</tr>
</tbody>
</table>

![Diagram of cell culture process](image-url)
Variation in Sensitivity of cell cultures to infection by viruses commonly isolated in clinical virology laboratories

<table>
<thead>
<tr>
<th>Virus</th>
<th>Cell culture<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PMK</td>
</tr>
<tr>
<td>RNA virus</td>
<td></td>
</tr>
<tr>
<td>Enterovirus</td>
<td>+++</td>
</tr>
<tr>
<td>Rhinovirus</td>
<td>+</td>
</tr>
<tr>
<td>Influenza virus</td>
<td>+++</td>
</tr>
<tr>
<td>RSV</td>
<td>++</td>
</tr>
<tr>
<td>DNA virus</td>
<td></td>
</tr>
<tr>
<td>Adenovirus</td>
<td>+</td>
</tr>
<tr>
<td>HSV</td>
<td>+</td>
</tr>
<tr>
<td>VZV</td>
<td>+</td>
</tr>
<tr>
<td>CMV</td>
<td>-</td>
</tr>
</tbody>
</table>

^aPMK, primary MK. Degree of sensitivity: ++++, highly sensitive; ++, moderately sensitive; +, low sensitivity; +/-, variable; -, not sensitive.
Detection of viral growth

➢ Cytopathic effects

- Uninfected cc
- Cell rounding
- Syncytium

➢ IF

➢ Other
Problems with cell culture

- Long incubation (up to 5 days)
- Sensitivity is variable
- Susceptible to bacterial contamination
- Some viruses do not grow in cell culture
 e.g. HCV
Rapid culture technique

➢ Shell Vial Assay
➢ Detect viral antigens
➢ 1-3 days
Serological test;
Antigen detection:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Virus</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasopharyngeal aspirate</td>
<td>Influenza V.</td>
<td>IF</td>
</tr>
<tr>
<td>Skin scrapings</td>
<td>HSV</td>
<td>IF</td>
</tr>
<tr>
<td>Faeces</td>
<td>Rotavirus</td>
<td>ELISA</td>
</tr>
<tr>
<td>Blood</td>
<td>HBV (HBsAg)</td>
<td>ELISA</td>
</tr>
</tbody>
</table>
Serological test;

Antibody detection;

- e.g. of techniques
- Complement fixation test (CFT)
- Immunofluorescence (IF)
- Enzyme-linked immunosorbent assay (ELISA)
Immunofluorescence; IF

- A- Direct
 Ag detection;
 * Sample (Ag)

- B- Indirect
 Ab detection;
 * Sample (Ab)
Fig. 3, HSV-infected epithelial cell from skin lesion (DFA)
ELISA

Ab detection

Ag detection

Indirect ELISA for Ab detection; coloured wells indicate reactivity
Molecular test:

- Polymerase chain reaction (PCR)
 - NA amplification technique.
 - Viral genome
- Uses:
 - Diagnosis
 - Monitoring response to treatment
Reference book and the relevant page numbers

- **Medical Microbiology and Immunology**
 By: Warren Levinson .

- **Lippincott’s Illustrated Reviews: Microbiology**
 By: Richard A.Harvey , Pamela C Champe & Bruce D. Fisher
 Pages;233-242
Thank you