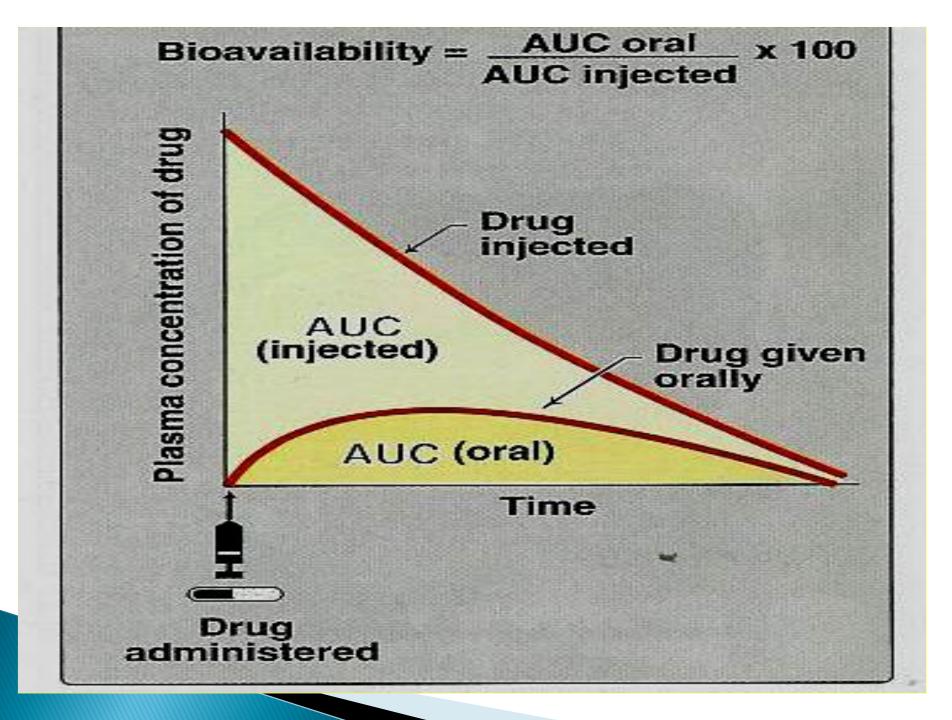


Pharmacokinetics II: Bioavailability and Distribution

Prof. Hanan Hagar Dr. Ishfaq Bukhari Pharmacology Department


By the end of the lectures, students should be able to define the following:

- Major body fluid compartments
- Concept of compartments.
- Apparent volume of distribution (vd).
- Plasma protein binding.
- Tissue binding.

Is the amount of <u>unchanged</u> drug that enters systemic circulation after administration and becomes available to produce pharmacological actions (rate and extent of active reaching systemic circulation)

Bioavailability (F) = <u>AUC (oral)</u> X 100 AUC (I.V.)

Bioavailability

I.V. provides 100% bioavailability i.e. F= 1.
Subcutaneous, intramuscular, oral, rectal, and other extra vascular routes of administration require that the drug be absorbed first, which can reduce bioavailability.

Absolute bioavailability

The bioavailability of a drug after administration by any route is compared to its intravenous standard formulation.

Relative bioavailability

- is determined when two products are compared to each other, not to an intravenous standard.
- This is commonly calculated in the drug industry to determine that the generic formulation is bioequivalent to another formulation.
- e.g Tylenol (paracetamol 500 mg) compared to panadol (paracetamol 500 mg).

Relative bioavailability

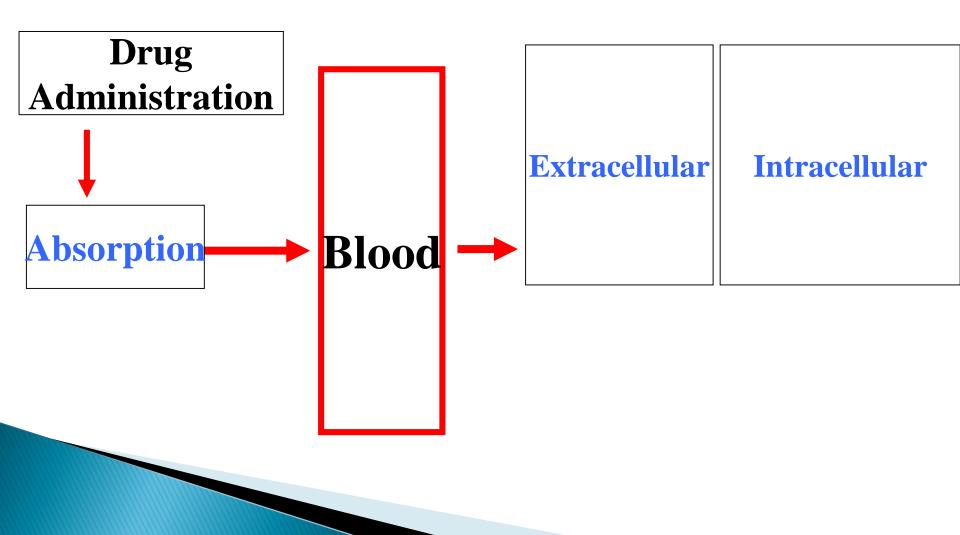
is important to get an idea of how <u>different</u>
 <u>formulations</u> or <u>routes of administration</u>
 differ in their bioavailability.

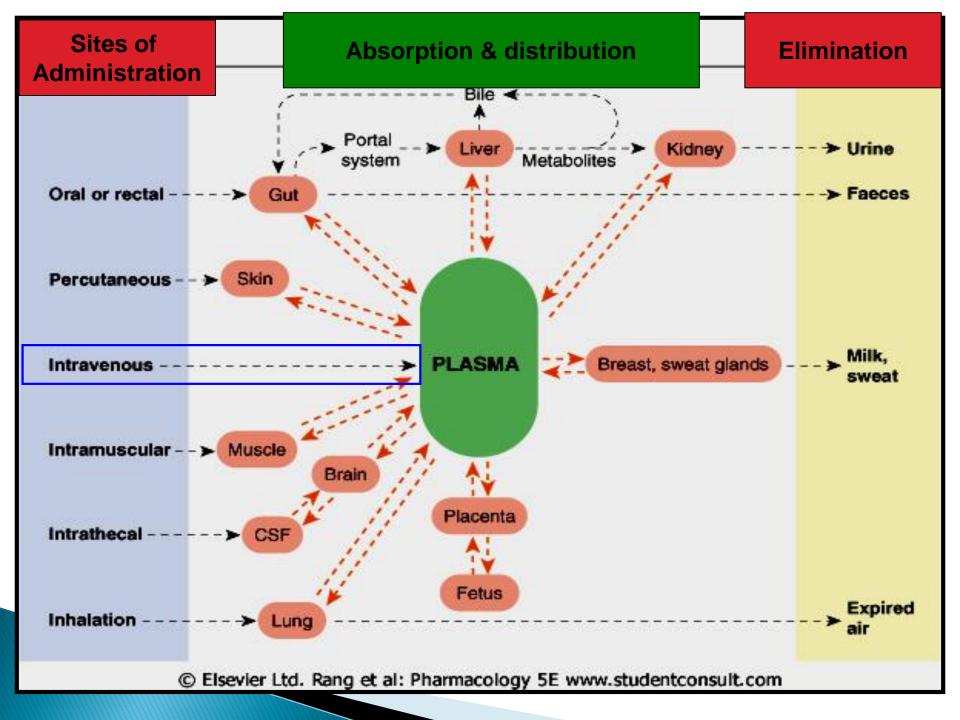
It dosage adjustment is required when changing formulations or routes of administration.

Bioequivalence

Two pharmaceutically products are

bioequivalent when the rate and extent of bioavailability of active ingredients in two products are the same.


Factors affecting bioavailability:


- are the same factors controlling drug absorption
- First pass effect

Distribution

Distribution

Is the process by which drugs leave blood circulation and enters the interstitium and/or the cells of the tissues.

Apparent Volume of Distribution (Vd)

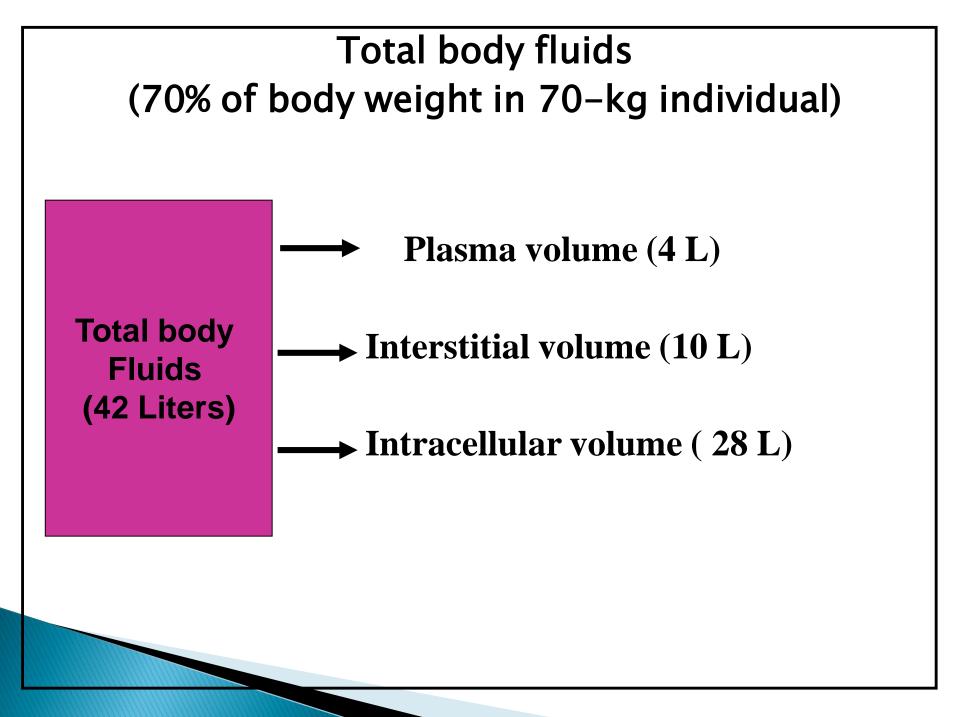
is the ratio of drug amount in the body (dose) to the concentration of drug in blood.

Vd (L)= <u>Dose</u> (mg) plasma concentration (mg/L)

Why is Vd important?

> To calculate loading dose

Large Vd = means long duration of action

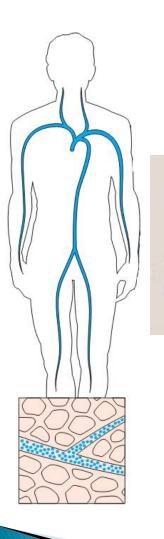

The major body fluid compartments are

Extracellular fluid (21%)

- Plasma (5 % of body weight = 4 liters).
- Interstitial fluid (16% = 10 liters).

Intracellular fluid (35%)

fluid present inside all cells in the body (28 L).


Drugs may distribute through:

- One compartment
- Two compartments
- Multi-compartments

Plasma compartment

4 liters

volume

- Vd: around 4 L.
- Very high molecular weight drugs, or drugs that bind to plasma proteins
- Can not moves across
 - endotelial cells of capillaries
- Drugs are trapped in blood
- Example: heparin 4L

Extracellular fluid Interstitia volume Plasma volume 10 liters 4 liters

Distribute through extracellular fluids. Pass endothelium into interstitial fluids BUT can not cross cell membranes to intracellular fluids. Drugs that have a low molecular weight but are hydrophilic. Vd: between 4 and 14 L.

> E.g. atracuronium 11 L

Total body water (extracellular and intracellular)

- For lipid soluble drugs
- Vd equal to total body water.
 - Ethanol 38 L
 - Drug that binds strongly to tissues.
 - Vd higher than total body water.
 - Digoxin:385 L

Volume of Distribution (Vd)

Drugs with low Vd

- distributed in extracellular compartments (plasma & interstitial fluid).
- Polar comp or lipid insoluble drugs. e.g. gentamycin, atracurium
- High MW e.g. heparin insulin.
- High plasma protein binding e.g. warfarin (anticoagulant).

Do not cross BBB or placental barriers.

Volume of Distribution (Vd)

Drugs with high Vd

- Have higher concentrations in tissues than in plasma.
- Lipid soluble.
- Distributed intracellularly
- e.g. digoxin, phenytion, morphine

FACTORS AFFECTING DISTRIBUTION

1.Cardiac output and blood flow.

- 2. Physical and chemical properties of the drug.
 - Molecular weight
 - Pka.
 - Lipid solubility.
- 3. Capillary Permeability
- 4. Plasma protein binding
- 5. Tissue binding.

Blood flow to organs

• <u>The greater</u> the blood flow to tissues, the <u>more</u> distribution that occurs from plasma to interstitial fluids.

Drugs distribute more rapidly to <u>brain</u>, <u>liver and kidney</u> > more than skeletal muscles & fat.

Physical and chemical properties of drug

- Most lipid soluble drugs <u>(unionized, uncharged,</u> <u>nonpolar)</u> cross biological membranes
- Hydrophilic drugs (ionized, charged, polar) do not readily cross membranes but go through slit junctions in endothelial cells of capillaries.

Capillary permeability

- Endothelial cells of capillaries in tissues other than brain have wide slit junctions allowing easy movement, permeation and distribution.
- Brain has tight junction Blood Brain Barrier (BBB).

Blood brain barrier (BBB):

- Only lipid soluble drugs or actively transported drugs can cross BBB.
- Hydrophilic drugs (ionized or polar drugs) can not cross BBB.
- Inflammation as in <u>meningitis</u> increase permeability to hydrophilic drugs
- e.g. penicillin & gentamycin

Placental barrier

Lipid soluble drugs can cross placental barrier
 and enter the fetal blood.

Structure of endothelial cells in the liver

Large fenestrations allow drugs to exchange freely between blood and interstitium in the liver.

A

Slit junctions

Basement

membrane

Drug

Structure of a brain capillary

Astrocyte foot processes

Basement membrane

B

Brain endothelial cell

Tight junction

At tight junctions, two adjoining cells merge so that the cells are physically joined and form a continuous wall that prevents many substances from entering the brain.

Permeability of a brain capillary

С

Lipid-soluble drugs

Carrier-mediated transport

• Plasma proteins binding.

• Tissue proteins binding.

<u>Plasma protein binding:</u>

- Extensive plasma protein binding will cause more drug to stay in the blood compartment .
- Therefore, drugs which bind strongly to plasma protein tend to have lower distribution (Vd).

Plasma Proteins

Albumin

Has affinity for acidic drugs as warfarin, phenytoin, aspirin

alpha 1 -acid glycoproteins

Has affinity for basic drugs (cationic) as diazepam, quinidine.

Plasma protein binding

drugs which bind strongly to plasma protein tend
 to have lower distribution (Vd).

 In blood, drugs exist in two forms bound and unbound forms in equilibrium

Unbound drug (free) - bound drug

Tissues Binding

Drugs can bind to specific tissues and will have high volume of distribution (Vd)

Tetracycline bind to bone

Bound form of drug

- non diffusible form
- can not cross endothelial barrier
- can not combine with receptors
- inactive
- not available for metabolism & excretion

has long duration of

Unbound form of drug

- diffusible form
- cross endothelial barrier
- combine with receptors

active

available for metabolism& excretion

-has short duration of action (t ¹/₂).

Characters & consequences of Binding

Usually reversible.

- determines volume of distribution (vd)
- Slows drug metabolism & excretion.
- Prolongs duration of drug action (t1/2).
- Result in clinically important drug interactions

Displacement

- Competition for the same binding site on the plasma proteins may occur between two drugs
 —> displacement of one drug & increasing its concentrations & effects.

Albumin-aspirin + free warfarin \longrightarrow bleeding.