

Foundation Block | Histology

Epithelial Tissues

2

- Color index : Main text Important Female slide Male slide DR.Notes extra

Editing File

Objectives :

In this lecture you are expected to learn :

- Describe general characteristics of epithelial tissue.
- Discuss <u>microscopic structure</u> and <u>distribution</u> of different types of epithelial membranes.
- <u>Classify glandular epithelium</u> according to different parameters.
- Enumerate the <u>function</u> of epithelial tissue.
- Understand the following <u>clinical applications</u> :
 - **Immotile cilia syndrome** (Kartagener's syndrome)
 - Metaplasia.

Epithelial Tissues

• Cells are <u>tightly joined</u> with little intercellular space. (Compacted)

Rest on a <u>basement membrane</u>.

• Avascular. (No Blood Capillaries\Venules\Arterioles Between Epithelial Cells)

■ (Gets Nutrients And O₂ From Neighbour Blood Vessels) ■ (Get (Rid of Waste Products + CO₂ By Diffusion)

Histology team

High power of <u>Regeneration</u>. (Epithelial Tissue > Other Tissues)

Epithelium Tissue could be derived from Ectoderm, endoderm and mesoderm.
 Connective tissue only derived from mesoderm (remember the trilaminar embryonic disc, Embryology)
 Epithelial membranes <u>Cover</u> Structures like <u>skin</u> and line cavities like <u>stomach, uterus</u>
 <u>Buccal cavity and nasal cavity</u>

Functions of epithelium:-

•

Glands (glandular epithelium) classification according to :

Presence or absence of ducts	Number of cells	Mode of secretion	Shape of secretory part	Nature of secretion
• <u>Exocrine:</u> e.g.*salivary glands • <u>Endocrine:</u> e.g. thyroid gland and adrenal gland	 <u>Unicellular:</u> e.g. goblet cells <u>Multicellular</u> e.g. salivary glands 	• <u>Merocrine:</u> <u>no part</u> of the cell is <u>lost</u> with the secretion e.g. salivary glands • <u>Apocrine:</u>	• <u>Tubular:</u> e.g. intestinal gland	• <u>Serous:</u> e.g. parotid gland ^(with enzymes) • <u>Mucous:</u> e.g. goblet cells
• <u>Mixed:</u> e.g. pancreas	unicellular gland	the <u>top</u> of the cell is <u>lost</u> with the secretion e.g. mammary gland • <u>Holocrine:</u> the <u>whole</u> cell	• <u>Alveolar(acinar)</u> e.g. mammary gland	 <u>Muco-serous:</u> e.g. Sublingual gland <u>Watery:</u> e.g. sweat gland
Endocrine gland	(a) Unicellular (b) Multicellular	detaches with the secretion e.g. sebaceous glands	• <u>Tubulo-alveolar:</u> e.g. pancreas	Hyperpithelial cells Decrews Acinus Serous Acinus Duci Serous Serous Serous Serous Serous Mice Acinus Mice Acinus
		Mero- Apo- Holo- crine crine crine		

Clinical Applications :

• Immotile cilia syndrome (Kartagener's syndrome):

- Disorder that causes:
 - infertility in male.
 - <u>chronic respiratory tract infection</u> in both sexes.
- It is caused by immobility of cilia and flagella induced by deficiency of dynein.
- Dynein protein is responsible for movements of cilia and flagella.
- Metaplasia:
 - It is the <u>transformation of one type of tissue to another</u> in response to injury.
 - This condition is usually reversible if the injury is removed.
 - Example: <u>Pseudostratified ciliated columnar epithelium</u> of the respiratory passages, e.g. trachea, of heavy smokers may undergo squamous metaplasia, transforming into <u>stratified</u> <u>squamous epithelium</u>.

Summary

Summary

Credits to : Razan alobaid

Histology team

•The Creative Crew!

Foundation Block | Histology Team (441)

Alwaleed Alnasser

Girls Captain Norah Alawlah

- Abdullah Alqarni
- Abdulrahman Mukhtar
- Abdulmajeed Alharbi
- Mansor Aldoajy
- Mohammed Alhaqbani
- Ziyad Al-Abduljabbar

- Iyah Alhasan
- Hussah Alshareef
- Lobna Altimimy
- Zahraa Alsultan
- Fay Alluhaidan
- Sarah Al-homaydy
- Sara Al-Majed