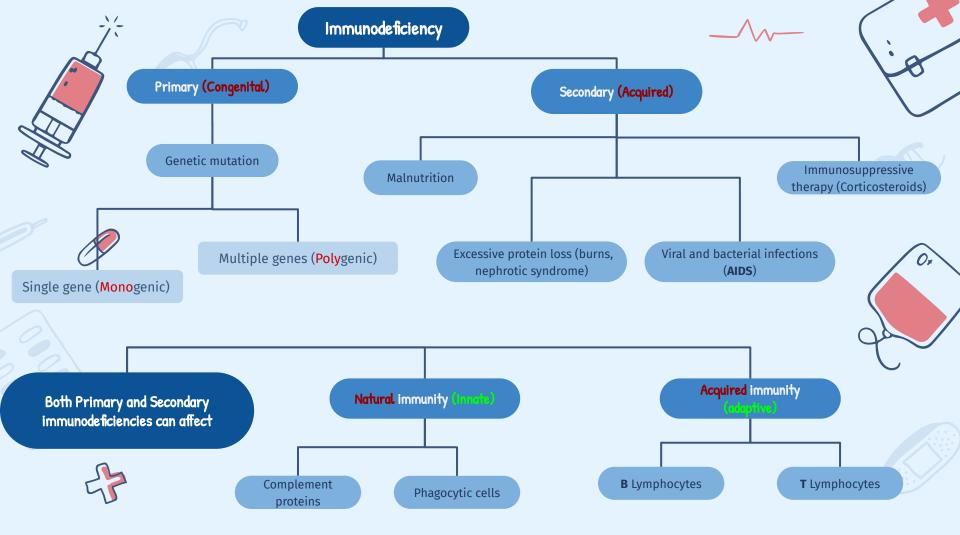


Immunodeficiency disorders

Revised & Reviewed Abdulaziz & Bahammam Faye Wael Sendi

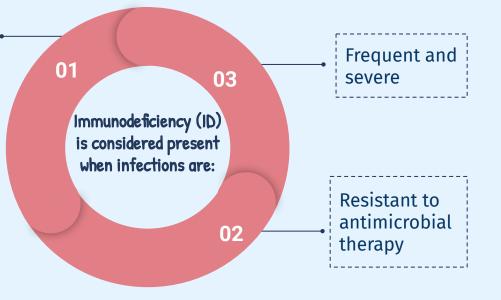
Colour index: Main text IMPORTANT Drs notes Females slides Male slides Extra

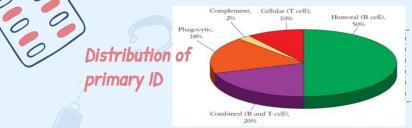
b



- Identify that immunodeficiency is due to a defect in the immune function
- Describe the classification of immunodeficiency
- Explain the presentations of different types of immunodeficiencies (e.g. recurrent infections)
- Understand the varieties of immune system deficiencies involving defects in: T cells, B cells, phagocytes and complement
- Know the laboratory investigations for immunodeficiency disorders

What is Immunodeficiency?


Immunodeficiency is a state in which the ability of the immune system to fight infectious disease is **compromised** or entirely **absent**


A person who has an immunodeficiency is called 'Immunocompromised'

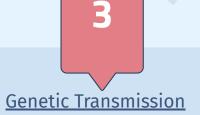
Caused by opportunistic microbes

Opportunistic microbes: usually non- pathogenic microbes, but they become pathogenic when the host is weak and immunocompromised.

For example: defect of Humoral B cell (adaptive immunity) is the most common (50%)

Pattern of infections and symptoms associated with Primary ID

Disorder	Opportunistic infections	Other symptoms
Antibody	Sinopulmonary (pyogenic bacteria) Gastrointestinal (enterovirus, giardia)	Autoimmune diseases (autoantibodies, inflammatory bowel disease
Cell-mediated immunity	Pneumonia (pyogenic bacteria, pneumocystis carinii, viruses) Gastrointestinal (viruses), mycoses of Skin and mucous membranes (fungi)	N/A
Complement	Sepsis and other blood-borne infections (streptococci, pneumococci, neisseria)	Autoimmune diseases (systemic lupus erythematosus, glomerulonephritis
Phagocytosis	Skin abscesses, reticuloendothelial infections (staphylococci, enteric bacteria, fungi, mycobacteria)	N/A
Regulatory T cells	N/A	Autoimmune disease


	DiGeorge Syndrome prim	
 A congenital defect that is marked by in general: Absence or underdevelopment of the Thymus gland (hypoplasia). Hypoparathyroidism. They function to control the normal metabolism and the blood level of the calcium. Facial abnormalities. Cardiovascular abnormalities 	✓ <u>Management of DiGeon</u> <u>syndrome</u> Fetal thymus tissue gra <u>transplant</u> (14 weeks old) We can also treat Calcium deficiency to avoid epilepsy.	→ Extreme susceptibility to viral

B-Cell Defects (Gammaqlobulinemia)

<u>Team 439:</u>

Why? Because the T cells are not affected. only B cells work in the case of bacterial infection and T cells work in cases of viral infections. Patients with B-cell defects are subject to recurrent bacterial infection BUT display normal immunity to most viral and fungal infections. Diverse spectrum ranging from:

- Complete absence of B-cells and plasma cells.
- Low or absent immunoglobulins
- Selective absence of certain immunoglobulins.

- Autosomal recessive.

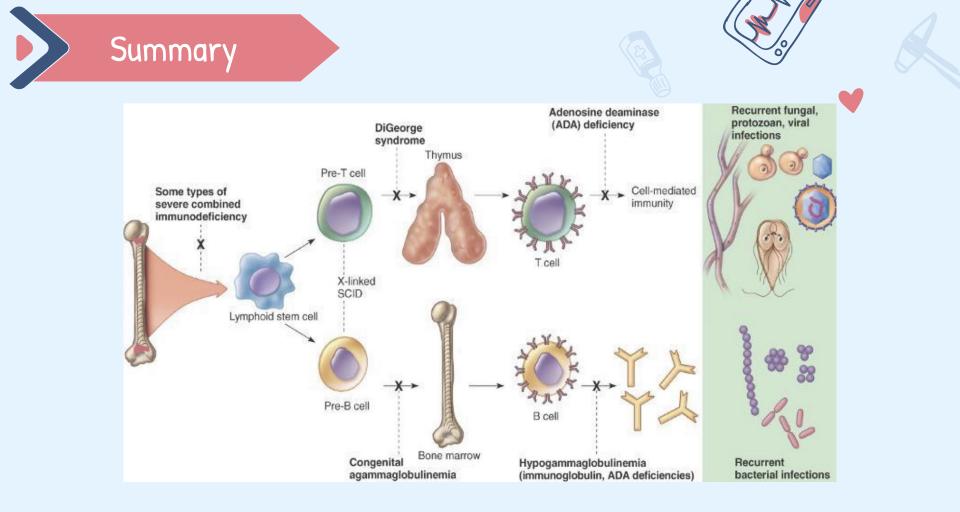
- X-linked disease:
- Females : carriers (normal).
- Males : manifest the disease.

Management of immunoglobulin deficiencies:

Periodic intravenous immunoglobulin (IVIG) reduces infectious complications.

X-linked agammaglobulinemia (XLA) or Bruton's hypogammaglobulinemia (Congenital disease)

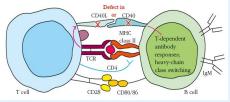
- The most common type, 80% to 90%.
 - Defect in Bruton Tyrosine Kinase (BTK).
 - The defect involves a block in maturation of pre- B- cells to mature B-cells in bone marrow.


Features of XLA:

- Reduced B-cell counts to 0.1 % (normally 5%-15%)
- Absence of Immunoglobulins
- Affected children suffer from recurrent pyogenic bacterial infections

Selective immunoqlobulin deficiency rare (Congenital disease)

- IgA deficiency (1:700)
- Most are asymptomatic: but may have increased incidence of respiratory tract infections (R.T.I)
- Some have recurrent R.T.I and gastrointestinal tract symptoms


Agammaglobulinemia is a group of inherited immune deficiencies characterized by a low concentration of antibodies in the blood due to the lack of particular lymphocytes (B) in the blood and lymph

X-linked hyper-IgM Syndrome (Congenital disease)

Characterized by:

- Defective CD40L/CD40 interaction B cell class switching fails.
- Variable IgM levels <u>most</u> frequently high.
- Low IgG, IgA & IgE. Team 439:(remember the word AGE)

Common Variable Immunodeficiency Disorders

Disorders of unknown etiology

Characterized by:

- Presentation in childhood or later in life.
- Recurrent respiratory tract infections due to immunodeficiency.
- Reduction in the levels of one or more antibody isotype with normal B cell numbers.
- Impaired B-cell responses to antigen.

B-cell Defects (Gammaglobulinaemias

Male

slides

Severe Combined Immunodeficiency (SCID)

- Congenital
- Increased susceptibility to : viral , fungal, bacterial protozoal infectious (starting at 3 months of age) SCID found mainly in babies from 3-6 months
- causes:
 - Enzyme deficiencies :
 - 1.ADA (adenosine deaminase) deficiency
 - -Catalyzes conversion of adenosine or deoxyadenosine to inosine or deoxyinosine , respectively (Which interferes with DNA synthesis).

- 2.PNP (purine phosphorylase) deficiency
- -Toxic metabolites accumulate in T and B cells.
- Management :
 - 1.Infusion of purified enzymes.
 - 2.Gene therapy

★ Boys Slide

Severe Combined Immunodeficiency (SCID) Cont.

- •Reticular Dysgenesis (RD)
 - Initial hematopoietic cell development is blocked by defects in the adenylate kinase 2 gene (AK2)
 - Apoptosis of myeloid and lymphoid precursors
 - Severe reductions in circulating leukocytes
 - Impairment of both innate and adaptive immunity
 - Susceptibility to infection by all types of microorganisms
 - Without aggressive treatment children die in early, infancy
- •Deficiency in cytokine signaling:
- Defects in the gene encoding for common gamma chain of the IL-2, IL-4, IL-7, IL-9.
- IL-15 and IL-21 receptors.
- This leads to widespread defects in B-cell , T-cell and NK-cell development. NK-cell (Natural Killing Cell)

Leukocyte defects

Quantitative defects (Related to numbers)

Congenital Agranulocytosis other name : Kostmann's Syndrome •Defect in the gene inducing G-CSF (Granulocyte Colony Stimulating Factor) note 439 : important for producing granulocytes (play a major role in bacterial infections) •Features : pneumonia , otitis media , abscesses

**Note

-patient with deficiency in the G-CSF , what's the defect ? Quantitative congenital agranulocytosis defect <u>A) Defects in chemotaxis</u> Leukocyte Adhesion Deficiency -Defect in the adhesion deficiency molecules responsible of leukocyte trafficking and migration to sites of infection

> مسؤولة عن تحريك كريات الدم البيضاء الى مكان العدوى لقتل البكتيريا

Qualitative defects (Related to function)

B) Defects in intracellular killing Chronic Granulomatous Disease (CGD) -congenital disease -Defect in the oxidative complex responsible for producing superoxide radicals -Neutrophils lack the "Respiratory burst" upon phagocytosis -characterized by recurrent life-threatening and granuloma formation These severe infection include : skin and bone infection + abscess in internal organs such as : lung , liver and brain

Complement Deficiency

★ Thanks to Teams 439+438

Deficiency in	Components	Deficiency lead to
Classical pathway	С1, С2, С4	Immune-complex disease
Alternative pathway	Factor D Factor B	Infection with pyogenic bacteria and neisseria Spp. No immune-complex disease
MB-lectin pathway	MBL , MASP 1 , MASP 2 C2 , C4	Bacterial infections (Mainly in childhood)
C3b deposition	С3	Infection with pyogenic bacteria and neisseria Spp. Sometimes immune-complex disease
Membrane attack complex components	C5 , C6 , C7 C8 , C9	Infection with neisseria Spp. Only
**Note		

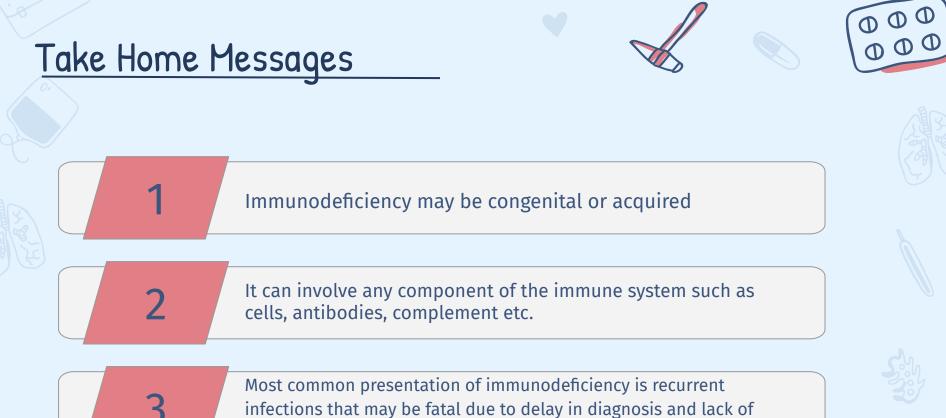
-immune-complex disease caused of ? Deficiency in Classical pathway

-Patient came with infection with neisseria **only** , what's the deficient in this patient ?

Membrane attack complex components

Laboratory diagnosis of ID (Immunodeficiency)

Complete blood Count : total & differential Evaluation of antibody levels and response to antigens


T and B cells counts (Flow Cytometry) Measurement of Complement proteins and function (CH50)

Assessment of Phagocytosis and respiratory burst (Oxygen Radicals)

appropriate therapy

MCQs

Q1: Excessive protein loss is an example of			
A- Primary ID	B- Secondary ID	C- Both A, C	
Q2: Which one of the following is the most common primary ID			
A- Complement defect	B- Cellular (T cells)	C- Humeral (B cells) defect	
Q3: Digeorge syndrome include the following except ?			
A- Absence of the Thymus	B- Hyperparathyroidism.	C- Cardiovascular	

gland (hypoplasia).

D- Facial abnormalities. C- Cardiovascular abnormalities.

D-None is correct

D- Phagocytic defect

Q4: which one of the following	ng is an example of T-cell def	ect ?	
A- Bruton's hypogammaglobulinaemia	B- CGD	C- Selective immunoglobulin deficiency	D- Digeorge syndrome

MCQs

Q5: Which one is the common type in B-cell defects ?

A- Selective immunoglobulin deficiency	B- Digeorge syndrome	C- XLA	D- X-linked hyper-IgM syndrome
Q6: A deficiency in which of the following may lead to bacterial infectious (mainly in childhood)?			
A- C3b deposition	B- alternative pathway	C- classical pathway	D- MB-lectin pathway
Q7: which one of the following is marked by pneumonia , otitis media and abscesses?			
A- congenital agranulocytosis	B- leukocyte adhesion deficiency	C- chronic granulomatous disease	D- SCID
Q8: which one of the following is characterized by recurrent life-threatening & granuloma formation?			
A- congenital agranulocytosis	B-leukocyte adhesion deficiency	C- chronic granulomatous disease	D- SCID

Team leaders: Yara Almufleh – Ibrahim Alahmadi

Team members:

- Sarah Alhamlan
- Sahar Hakami
- Maram Alenazi
- Lama Bin Salamh
- Rahaf Alrayes
- Areej Altamimi
- Leen alhadlag
- Shaimaa Alqaoud 🎤

- Rahmah Alzahrani 🎤
- 🕨 Aisha Alhamed 🦽
- Abdulaziz Annab
- Firas Algahtani
- Mohammed Alfaris
- Turki Alkhalifa
- Abdulaziz Ayman

Special thanks and gratitude to Immunology Team (439)

