

Receptors families

, **.**

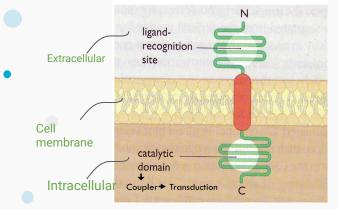
- Important
- Main Text
- Male slides
- female slides
- Extra information
- Doctors notes
- For any future corrections Editing file
- If you didn't understand any part from this lecture **<u>Click here</u>**

Objectives

• Classify receptors into their main superfamilies

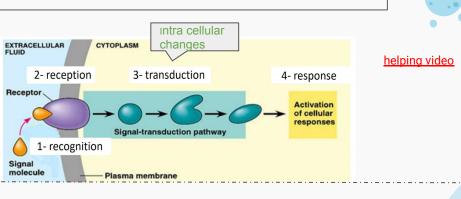
• Recognize their different transduction mechanisms

• Identify the nature & time frame of their response


Main Receptor Classes (Receptor Families)

Boys slides

- Effect Persistency of drugs
- Cellular mechanism of the drugs
- Selectivity of drugs
- Development of new drugs

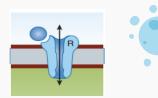

A Receptor structure :

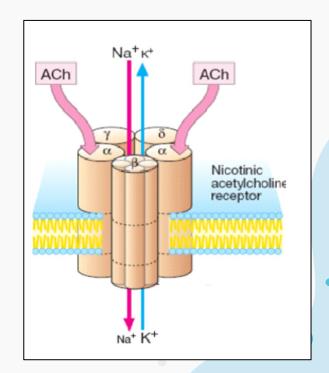
- Ligand(signal molecule) recognition site.
- Inner catalytic domain (catalysis>break down).

1.2 and 3 are surface Receptor receptors(on the cell Families membrane). Type 4 is intracellular receptor Nuclear receptor>has to be lipid soluble Type I Type II Type IV Type III (G-Protein (Receptors (Enzyme-(Ion Channellinked to gene coupled Linked Linked transcription) receptors) receptors) receptors)

The drug will produce its action in 4 steps:

*overview


Receptors Families


	Type I	Type II	Type III	Type IV
Location	Membrane	Membrane	Membrane	Nucleus
coupling	Direct	G-Protein	Direct	Via DNA
Synaptic transmission	Very Fast	fast	slow	Very slow
Response	milliseconds	Seconds	minutes	Hours or days
Examples	Nicotinic receptors	-Muscarinic receptors -Adrenergic receptors	Insulin receptors	Estrogen Steroid receptors
Effectors	channels	Channels/ Enzymes	Enzymes	DNA

Notes from *436 & 437

Type I : ion channel-linked receptor (ligand gated ion channel)-(ionotropic receptor)

- **Located at cell membrane** (as it's on the cell membrane, it doesn't require to be lipid soluble).
- **Directly activated by ligand binding.** (no second messenger needed)
- **Directly related to ion channels** (when the drug starts produce its effect, the effect will directly change the ion channel, open or close the channel).
- Involved in very fast synaptic transmission.
- Response occurs in milliseconds.
- E.g: nicotinic acetylcholine receptor that is activated by occupancy of a ligand as acetylcholine

Type II

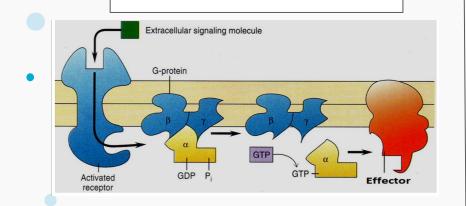
(G-Protein coupled receptors)

- The largest family that accounts for many known drug targets.
- Located at cell membrane .
- Coupled to G-protein Response through ion channels or enzymes
- (not direct)
- Involved in rapid transduction Response occurs in seconds.
- Eg: 1-<u>Muscarinic</u> receptors of <u>Ach</u> (<u>M</u>).

2- <u>Adrenergic</u> receptors of <u>Noradrenaline (</u> a and β)

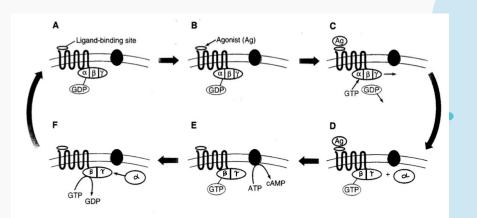
G-protein (Guaninenucleotide-binding proteins)

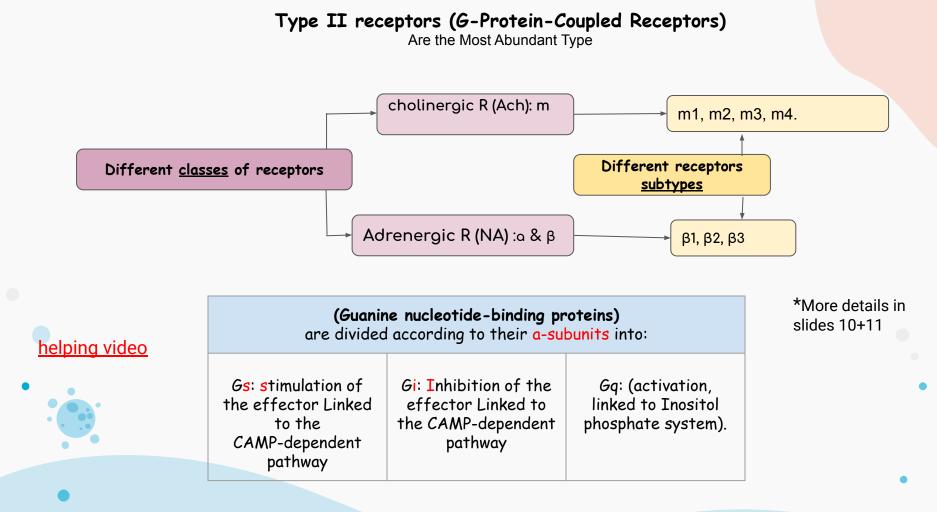
- Regulatory proteins (regulation for intracellular events)
- Comprise of three subunits (αβγ), α subunits possess GTPase activity.
- G proteins belong to the larger group of enzymes called GTPases.
- Regulate guanine nucleotides GDP, GTP.
- They bind and hydrolyze guanosine triphosphate (GTP) to guanosine diphosphate (GDP).
- They are active <u>'on</u>' when they are bound to <u>GTP</u>.
- They are inactive <u>'off'</u> when they are bound to <u>GDP</u>.


Mechanism

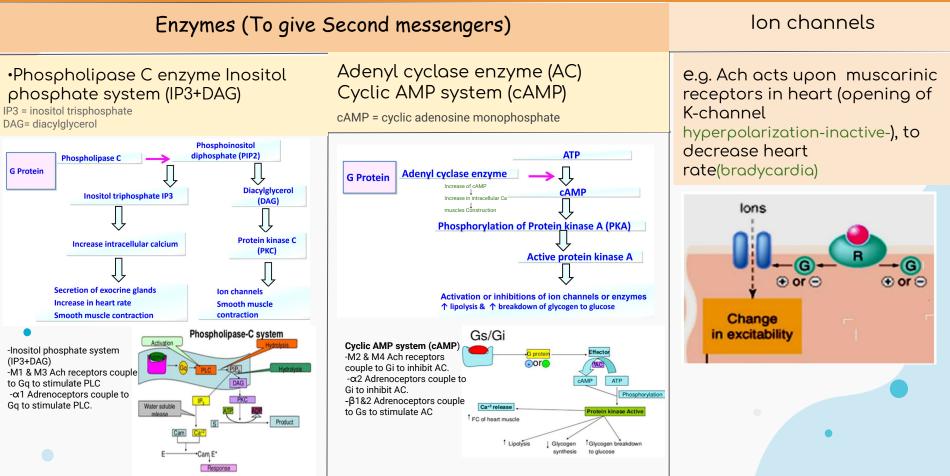
Receptors in this family respond to agonists By:

promoting the binding of GTP to the G protein <mark>alpha (α) subunit</mark>.


GTP activates the G protein and allows it, in turn, to activate the effector protein


The G protein remains active until it hydrolyzes the bound GTP to GDP and returns to its ground (inactive) state.

-When the G-protein trimer ($\alpha\beta\gamma$), binds to agonistoccupied receptor , the a-subunit dissociates & is then free to activate an effector.

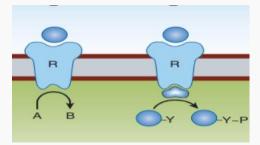

-Activation of the effector is terminated when the bound GTP molecule is hydrolyzed to GDP which allow α -subunit to recombine with ($\beta\gamma$) and returns to its inactive state.

Type II : G-Protein coupled receptors

<u>helping</u> <u>video</u>

*Team 439 Type II receptors (G-Prote	in coupled receptors classes)		
Adrenoceptors (Alpha & Beta)	Cholinergic receptors (M)		
 α 1 Adrenoceptors couple to Gq to stimulate PLC = Contraction of smooth muscles ◄ second messenger is inositol phosphate system (IP3+DAG) 	M1 & M3 Ach receptors couple to Gq to stimulate PLC. second messenger is inositol phosphate system (IP3+DAG) 		
 α2 Adrenoceptors couple to Gi to inhibit AC. ◆ Second messengers is cyclic AMP system (cAMP) 	M2 & M4 Ach receptors couple to Gi to inhibit AC Second messengers is cyclic AMP system (cAMP)		
 β1&2 Adrenoceptors couple to Gs to stimulate AC ◆ Second messengers is cyclic AMP system (cAMP) 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
 Adrenaline binds to α2 Adrenoceptors that will activate Gi (Inhibitory) protein. Gi protein will inhibit (AC) that will decrease cAMP Concentration = Decrease contraction. Adrenaline works on heart muscles by binding to β2 Adrenoceptors, that will activate Gs (Stimulatory) protein. Gs 	 Acetylcholine works on bronchi by M3 Ach receptor that will activate Gq proteins and Gq proteins will activate (PLC) phospholipase c that will increase Ca concentration= Increase contraction of smooth muscles Adrenaline works on smooth muscles by a 1 receptor that will 		
protein will activate (AC), that will increase cAMP Concentration = Increase muscle contraction (tachycardia) Thx for #438	activate Gq proteins and Gq proteins will activate (PLC) that will increase Ca concentration = Increase contraction		

•	Ach receptors	Couple to			
	M1 stimulatory	Gq	stimulate PLC	stimulation	
	M2 inhibitory	Gi	Inhibit AC(cAMP) Opening of K-channels	:Heart (Bradycardia) (slow heart rate)	الأعداد الفردية :stimulate الأعداد الزوجية: Inhibit
	M3 stimulatory	Gq	stimulate PLC	Contraction of Smooth muscles (bronchoconstriction)	
	M4 inhibitory	Gi	Inhibit AC (cAMP)	Inhibition	
	Adrenoceptors	Couple to			
	β1 stimulatory	Gs	stimulate AC	Stimulation (tachycardia Increase heart rate Because ↑ Ca)	
	al stimulatory	Gq	stimulate PLC	Contraction of smooth muscles	

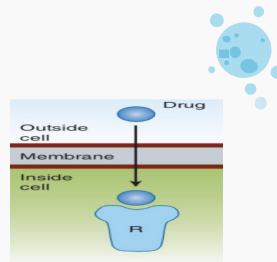

Type III (Enzyme-Linked receptors) (Tyrosine Kinase-linked receptor)

*Extra information Team 437

- Located at cell membrane
- Linked to enzyme (with intrinsic enzymatic activity) (They control many cellular functions as metabolism and growth)
- Tyrosine Kinase-linked receptor
- Involved in response to hormones, growth factors.
- They control many cellular functions as metabolism and growth.
- Response occurs in minutes to hours.
- Activation of kinases as tyrosine kinase with phosphorylation of tyrosine residue on their substrates and activation of many intracellular signaling pathways in the cell.

E.g. Insulin receptors

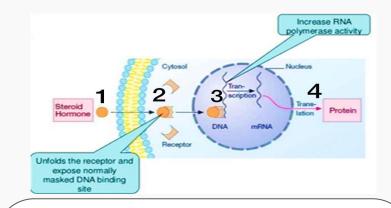
* Kinase enzyme make phosphorylation (adding phosphate) to the tyrosine. Tyrosine located in the intracellular protein, like enzyme



*Extra information Team 437

Type IV: Nuclear receptors Gene transcription receptors

- •Located intracellularly (so that the drug has to be lipid soluble).
- Directly related to DNA (Gene transcription).
- Activation of receptors either increase or decrease protein synthesis.
- Response occurs in hours or days and persists longer.
- Their natural ligands are lipophylic hormones; steroids, thyroids, estrogen.

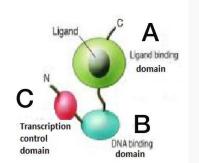


• They possess an area that recognizes specific DNA sequence in the nucleus which can bind it. This sequence is called a Responsive Element [RE] .(the place where the drug will bind is the DNA, especially in some sequence of the DNA which we called it Responsive Element)

- This means that the activated receptors are acting as TRANSCRIPTION FACTORS [TF] \rightarrow expressing or repressing target genes.
- E.g. Estrogen Steroid receptors

*Boys Doctor Notes

Type IV: Gene transcription receptors

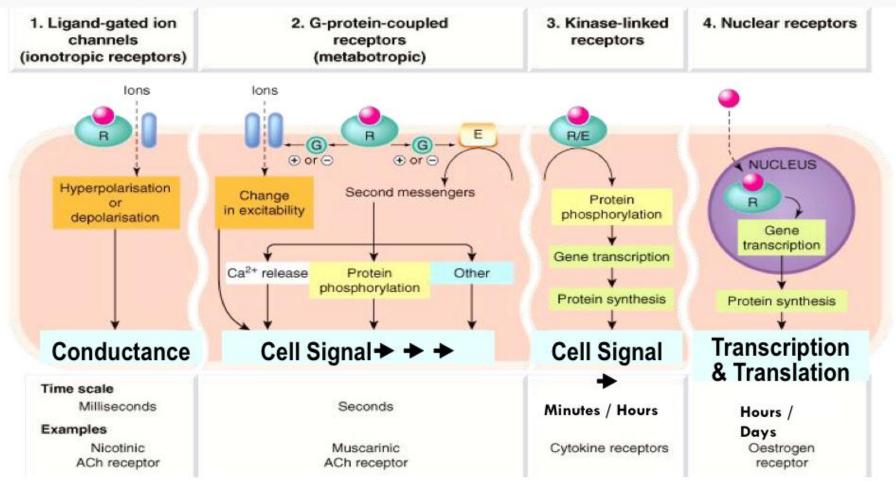


1- لازم ligand یکون lipophilic hormones لیستطیع اختراق cell membrane

2-لما يرتبط ligand مع receptor راح يتغير شكله ليستطيع الدخول داخل nucleus

3--یهبط علی Responsive Element یا انه یزود او ینقص gene transcription

4- ينتج عندنا protein يا انه يكون صالح او طالح



A-المنطقة التي سيجلس عليها Ligand

B-المنطقة التي تهبط على DNA

C-المسؤول عن زيادة او نقص gene transcription

Summary

1 is the	only intracellular		
A-Type IV	B-Type II	C-Type III	D-Type I

A-G-Protein B-Enzyme-Linked	C-ion channel-Linked	Dlinked to gene transcription
-----------------------------	-------------------------	-------------------------------

A- Gs & Gq B-	- Gi & Gq	C-Gs & Gi	D-none of above
---------------	-----------	-----------	-----------------

4-Their natural liga	nds are lipophilic:		
A-Type I	B-Type II	C-Type III	D-Type IV
Receptors	Receptors	Receptors	Receptors

5-Which one of these type of receptors gives the fastest response?				
A- Nicotinic receptors	B-Muscarinic receptors	C- Insulin receptors	D-estrogen steroid receptor	
6-Insulin receptors are examples of :				
λ- Туре Ι	B-Type II	C- Type III	D- Type IV	
7What is the nature of the ligands that bind to type IV receptors ?			ceptors ?	
A- amphipathic	B- hydrophilic	C- hydrophobic	D- polar ,uncharged	
8-which one of the following is a target for G-protein?				
A-Adenyl cyclase enzyme (AC)	B-nucleus	C- Ach	D-A&C	

1-When mentioning the regulate guanine nucleotides (GTP and GDP), which one is found in the active form?

2-Which enzyme configures ATP into cAMP?

3-Which system gets activated when acetylcholine binds to M2 & M4 via Gi receptor ?

4-Type IV receptors are found in?

5-Inositol phosphate system activates which protein?

Team leaders

Lujain Alkhalaf – Salman Alotaibi

Female team members:

- Alanoud Albawardi
- Shaimaa Alqaoud
- Nada Alsaif
- Raneem Alanazi
- Ftoon Alenazi
- Areej Altamimi
- Sarah[•]Alotaibi
- Rand Alshaya
 - Rand Aldajani

Male team members:

- Anas Alharbi
- Abdulrahman Alghamdi
- Abdullah Alotaibi
- Abdulaziz Aqusaiyer
- Bader Alshahrani
- Saad Alghadir
- Abdullah Alghamdi
- Mohammed Alsaqabi
- Abdulrahman Badghaish

Contact us on:

pharma411m@gmail.com