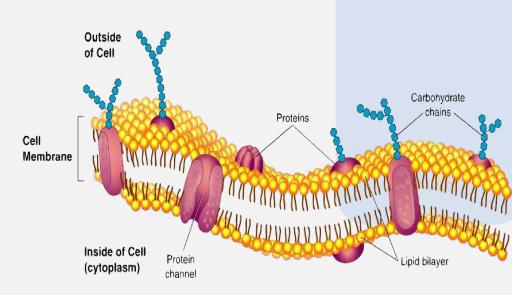
Cell membrane structure and transport across cell membrane

-oundation Block Physiology team 441

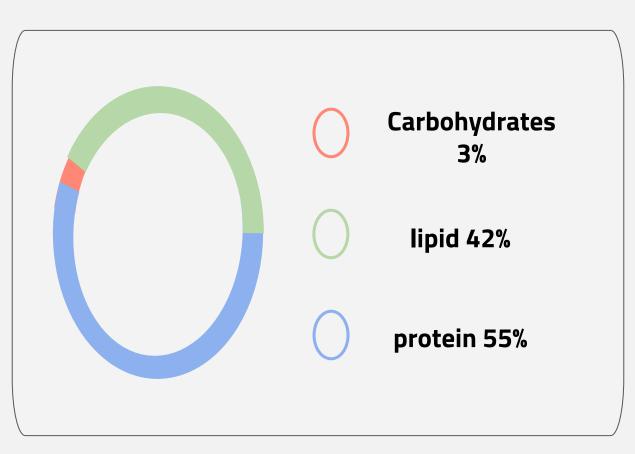
Team Leaders

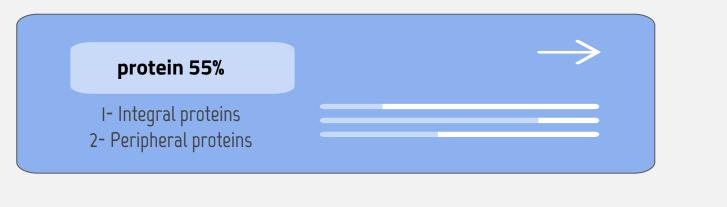
★ Alanoud albawardi★ Nawaf alshehri

Editing File


Objectives

- Describe the fluid mosaic model of membrane structure and function.
- Define permeability and list factors influencing permeability.
- Identify and describe carried-mediated transport processes : Primary active transport, secondary active transport, facilitates diffusion.
- Differentiate between passive and active transport mechanisms and give examples on each.


• Study source for this lecture: (Guyton & Hall Textbook of Medical Physiology, 13th edition).


★ Characteristics of cell membrane:

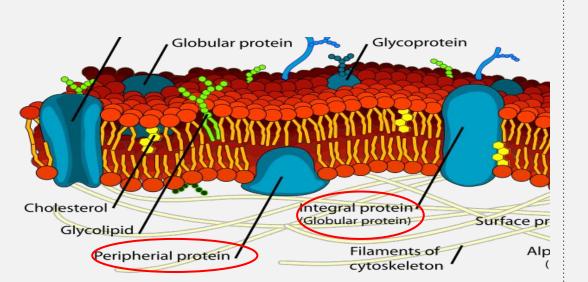
- It envelops, **covers** the cell.
- Its thin, pliable and elastic.
- Thickness : 7 12 nanometer (very thin).
- Also, known as "plasma membrane, cytoplasmic membrane".
- It is fluid not solid. It's fluid (phospholipid bilayer).

\star Composition of cell membrane

Composition of cell membrane [protein 55%-Lipid 42%]

ICF = intracellular fluid ECF = extracellular fluid

[protein 55%]


- ★ Integral proteins:
- Span the membrane.
- Provides structural channel or pores.

Function : Carrier Proteins.

- ★ Peripheral proteins:
 - Present in one side.

Function :

Hormone receptors.Cell surface antigens.

[Lipid 42%]

★ 25% Phospholipids (Amphipathic) Consist Of :

1. Glycerol head: (Hydrophilic):

(glycerol molecule is attached to a phosphate group) facing ICF, ECF and tails.

2. Two fatty Acid "tails: (hydrophobic):

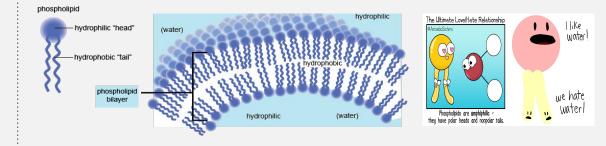
(long chains of hydrogen and carbon

molecules) face each other in the interior of the bilayer.

- 3. Amphipathic.
- ★ 13% Cholesterol:

Team 438 :

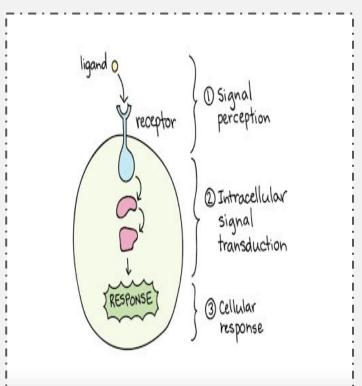
- Present in membrane in varying amounts.
- Controls much of the fluidity of the membrane.
 - Function : increases membrane flexibility and stability.


Cell membrane is <u>PERMEABLE</u> to:

Non-polar molecules (O²).
 Lipid soluble molecules (steroids).
 Small polar covalent bonds (CO²).
 4 H₂O (small size, lack charge).

Cell membrane <u>IMPERMEABLE</u> to:

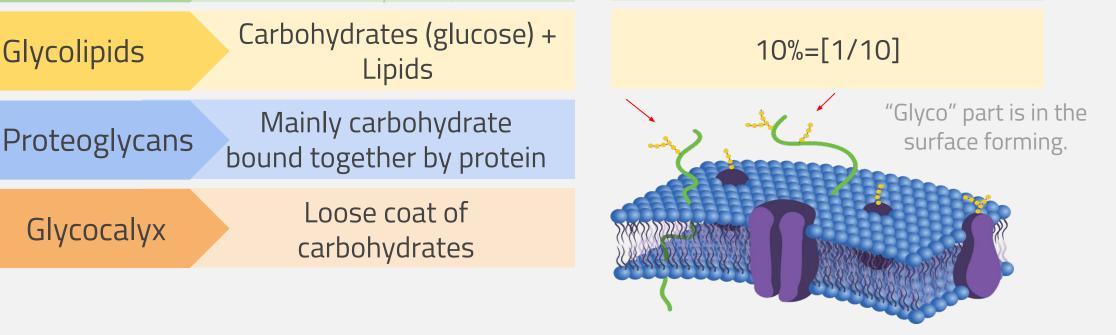
1 • Large polar molecules (glucose).2 • Charged inorganic ions (Na⁺).



★ Composition of cell membrane cont.

[Carbohydrates 3%]

- Carbohydrates function:
- 1. **Attaches** cell to each others.
- 2. Act as **receptors** substances [help legend to recognize its receptor].
- 3. Some enter to **immune reactions**.
- 4. Give most of cells overall -ve surface.

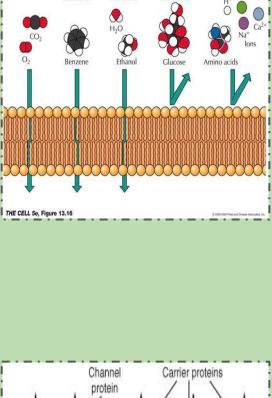

★ Structure:

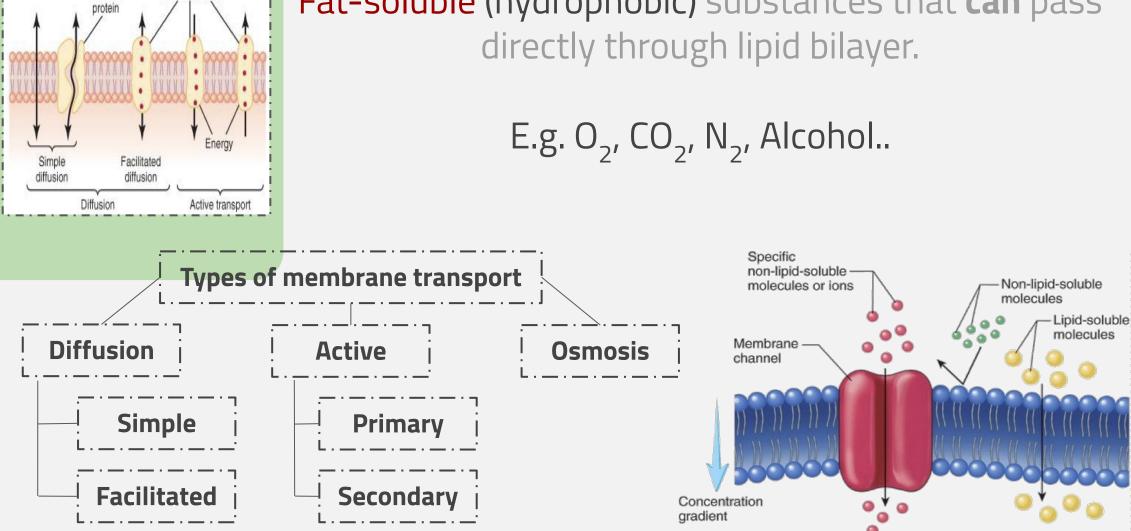
Glycoproteins

Carbohydrates + Proteins (Mainly protein bound to carbohydrates).

Most of the membrane carbohydrates

Transport through the cell membrane

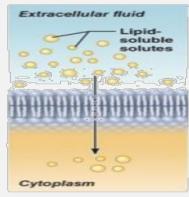

Cell membrane is selectively permeable (semi-permeable) to some molecules and ions.


Not permeable (impermeable) to proteins, nucleic acids, and other molecules.

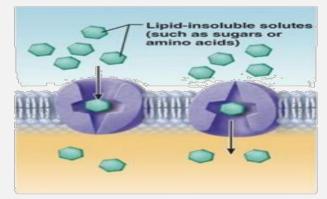
1. Through the proteins Water-soluble (hydrophilic) substances that can't pass directly through lipid bilayer. They must pass through carrier proteins.

E.g. ions, glucose..

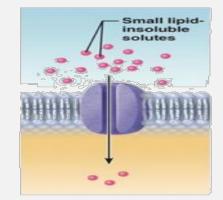
2. Directly through the lipid bilayer Fat-soluble (hydrophobic) substances that can pass directly through lipid bilayer.



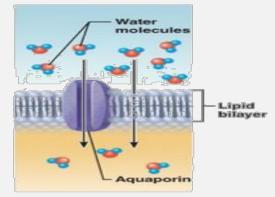
I. Passive Transport: (Diffusion):


Definition: a random movement of substance either through the membrane directly or combination with carrier protein <u>down</u> an electrochemical gradient.(downhill). (constant state).

Physical process occur whenever there is a concentration difference across the membrane and the membrane is permeable to the diffusing substance.



(a) Simple diffusion of fat-soluble molecules directly through the phospholipid bilayer


424213 Pearson Education, Inc.

Carrier-mediated facilitated diffusion via protein carrier specific for one chemical; binding of substrate causes transport protein to change shape

(c) Channel-mediated facilitated diffusion through a channel protein; mostly ions selected on basis of size and charge

(d) Osmosis, diffusion of a solvent such as water through a specific channel protein (aquaporin) or through the lipid bilayer

Simple diffusion	 Facilitated diffusion The rate of diffusion increases proportionately with the concentration of the diffusing substance until it reaches a transport maximum (T_{max}). 	Simple vs. Facilitated	
 Non carrier mediated transport. 		rate of diffusion $\propto (C_0 - C_i)$ V_{max} T_m facilitated diffusion	
	• At T _{max} , an increase in the	Concentration of substance	

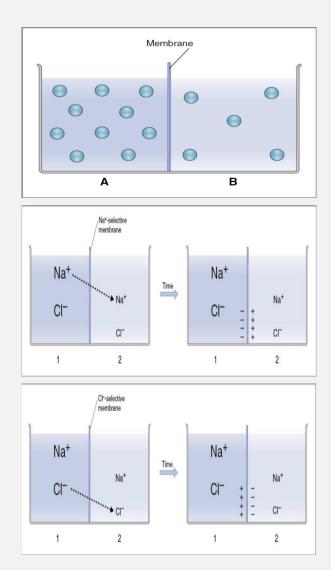
 The rate of diffusion increases proportionately with the concentration of the diffusing substance. concentration of the diffusing substance <u>does not</u> increase the rate of diffusion.

What limits maximum rate (Vmax) of facilitated diffusion? Number of carriers

 $T_m = transport maximum = the transport rate at which saturation occurs.$

when does the facilitated diffusion reach (V_{max}) ?
The rate of diffusion reaches a maximum (V_{max}) when all
the carriers are functioning as rapidly as possible.

There are two types of diffusion transport which are:


A. <u>Simple diffusion</u>

→ Non-carrier

mediated transport down an electrochemical gradient from high concentration to low concentration.

 → Diffusion of non-electrolytes (uncharged) from high concentration to low
 concentration.

→ Diffusion of electrolytes (charged) depend on both chemical, as will as electrical potential.

B. <u>Facilitated diffusion</u>
→ Carrier mediated
transports down an
electrochemical
gradient.
→ The process that

 → The process that allows selective movement in and out of the cell membrane.
 E.g. Transport glucose and most of amino acids (due to their big size).

(Simple and facilitated diffusion Do NOT require input of energy (ATP).)

★ Net Rate of Simple Diffusion Depends on:

Amount of substance available.

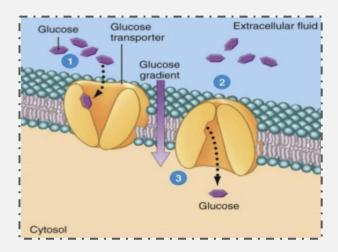
The number of opening in the cell membrane for the substance (pores)selective gating system.

Electrical potential difference.

Molecular size of the substance.

Lipid solubility.

Temperature.


Presence of Protein Channels.

Pressure, Concentration Difference between the substances.

Chemical concentration difference.

Net diffusion= P x A (Co-Ci)

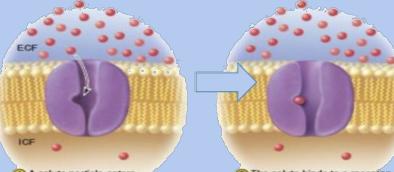
★ Features Of Carrier-mediated Transport (Facilitated diffusion]:

NOTE:

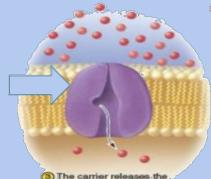
Neuronal plasma membrane is 20 x more permeable to K+ than Na+

Rate of Diffusion= P x A (CI-C2):
 P = Permeability coefficient

 a. Temperature.
 . Temperature.
 . Text and the set of molecule.


- c. Solubility in the lipids.
- d. Thickness of membrane
- 2. A = Surface area.
- 3. C1-C2 = Gradient Difference: a. Concentration difference.
 - b. Electrical difference.
 - c. Pressure difference.

Saturation: Increase in concentration = increase binding of protein, if all protein is occupied we achieve full saturation. i.e. The rate of diffusion reaches a maximum (Vmax) when all the carriers are functioning as rapidly as possible.


Stereospecificity: The binding Site recognize a specific substances. D-glucose but not L-glucose. Competition: Chemically similar substances can compete for the same binding site. Ex: D-galactose and D-glucose.

- Solute at one side of the membrane (substance-protein complex).
- 2. Change in carrier conformation (shape), allowing solute to pass through.
- Release of solute on the opposite side of membrane.

General Steps For Any Carrier-Mediated Transport:

A solute particle enters the channel of a membrane protein (carrier). The solute binds to a receptor site on the carrier and the carrier changes conformation.

The carrier releases the solute on the other side of the membrane.

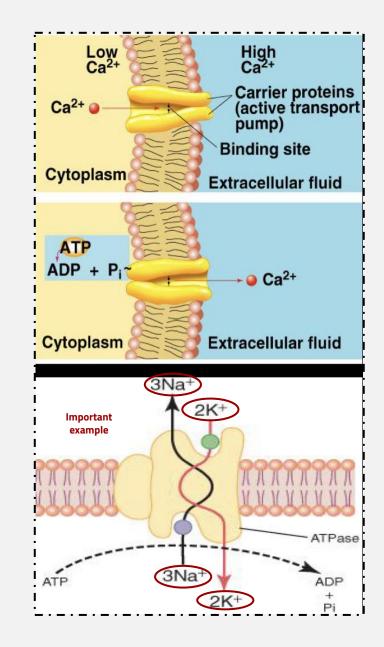
Binding Sites

Conformational changes

2. Active transport:

Definition :

Transport (uphill) against electrochemical gradient, required energy (direct or indirect), require carrier protein.


- Hydrolysis of ATP directly required for the function of the pump.
- Molecule or ion binds to "recognition site" on one side of pump.
- Binding stimulates phosphorylation(breakdown of ATP) of carrier protein.
- Carrier protein undergoesconformational change.
- Hinge-like motion releases transported molecules to opposite side of membrane.

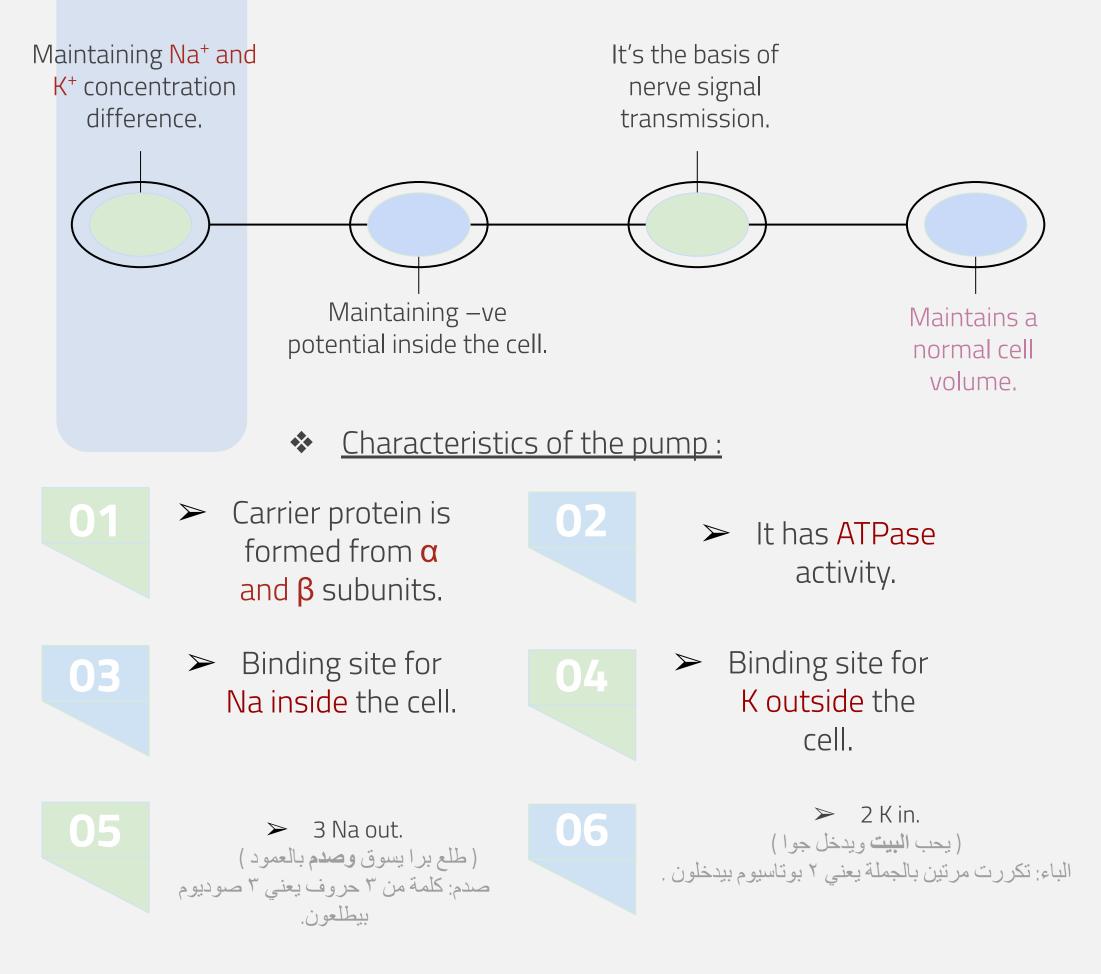
Examples:

- A. Sodium-Potassium Pump.
- B. Calcium ATPase (Ca²+ ATPase).
- C. Hydrogen Ions H+-K ATPase.

A. <u>Primary active transport</u>

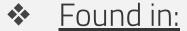
Energy is supplied directly from ATP.
ATP — ADP + P + Energy.

<u>A helpful video</u>


<u>A helpful video</u>

<u>A helpful video</u>

Sodium Potassium pump (Na⁺ - K⁺ pump) - 3 Na⁺ in → Out. - 2 K⁺ out -→ In.



Function : *

Primary active transport of calcium (Ca² + ATPase)

- Function: \Rightarrow
- Maintaining a low Ca² + concentration inside the cell. \succ

Primary active transport of hydrogen ions H - K ATPase: Found in:

2. Active transport

B. Secondary Active transport:

- Energy is supplied indirectly from primary ** transport.
- It is transport of one or more solutes against an \mathbf{x} electrochemical gradient ,coupled to transport of another solute down an electrochemical gradient.
- > "downhill " solute is Na. (Na in secondary active transport is usually down the electrochemical gradient).
- " uphill " solute is Glucose. (against the electrochemical gradient).

Type of secondary Active Transport:

- 1- Co-Transport.
- 2- Countertransport.

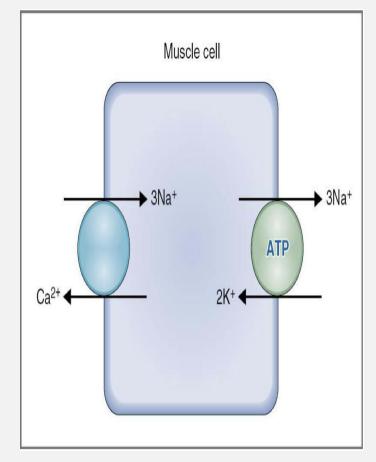
BULK TRANSPORT:

Movement of many large molecules, that cannot be transported by carriers, at the same time.

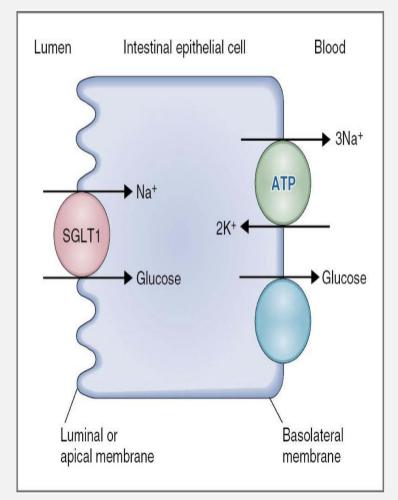
A helpful video

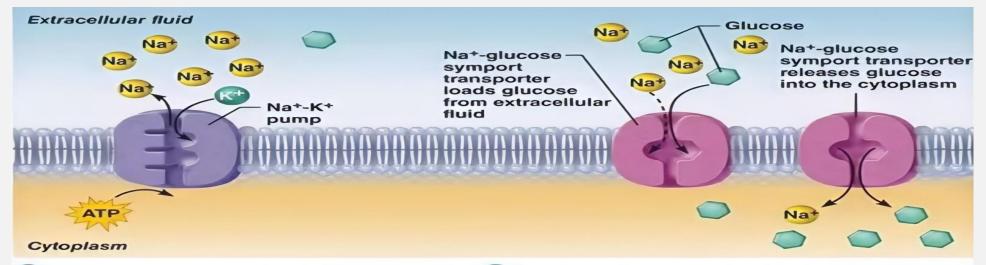
• Fusion of the membrane-bound vesicles that contains cellular products with the plasma membrane.

Endocytosis:

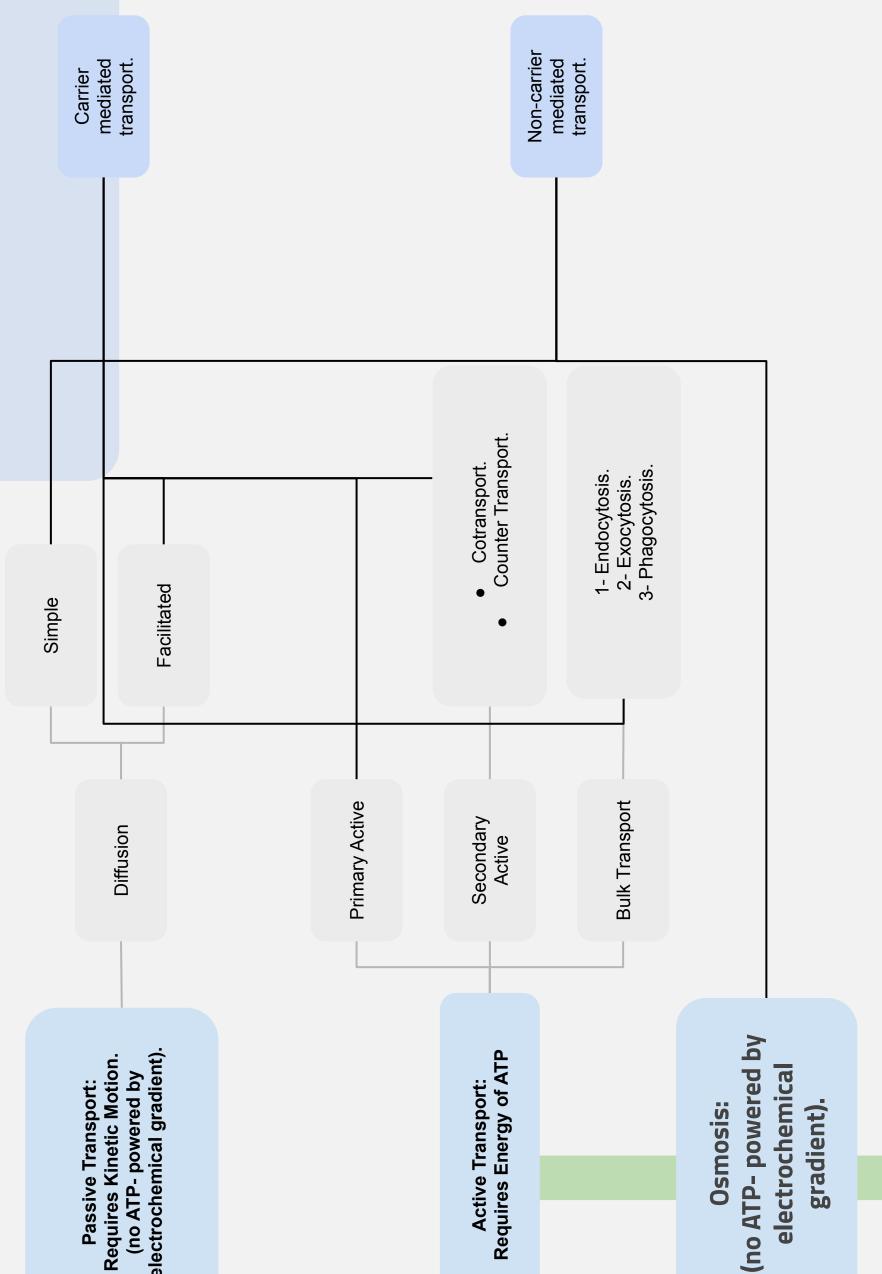

Exocytosis in reverse.

Specific molecules can be taken into the cell because of the interaction of the molecule and protein receptor.


Countertransport (antiport): Na is moving to the interior causing * other substance to move out. * <u>e.g.</u> Ca² + - Na exchange. (present in many >cell membranes). Na - H exchange in the kidney. ><u>Co-transport (symport):</u> All solutes move in the same direction "inside * cell". * <u>e.g.</u>


- ≻ Na glucose Co-transport.
- Na amino acid Co-transport.
- Found in:
- in the intestinal tract, kidney.

Countertransport


Co-transport

1 Primary active transport The ATP-driven Na⁺-K⁺ pump stores energy by creating a steep concentration gradient for Na⁺ entry into the cell. 2 Secondary active transport As Na⁺ diffuses back across the membrane through a membrane cotransporter protein, it drives glucose against its concentration gradient into the cell.

This slide was found only in male slides

Requires Kinetic Motion. (no ATP- powered by electrochemical gradient). **Passive Transport:**

:SM2INAHD3M TROUSNART

Test yourself

★ MCQs

Q1: The uncharged molecules cross the cell membrane via

A- osmosis	B-facilitated diffusion	C-simple diffusion	D-active transport	
Q2: In Na+/K+-pump, the binding site for Na+ is the cell				
A- doesn't exist	B-between	C-outside	D-inside	
Q3: Which of the following is not a factor affecting the rate of simple diffusion?				
A- Surface area	B-Saturation	C-Temperature	D-Electrical difference	
Q4: Protein about of cell membrane composition				
A- 25%	B-30%	C-55%	D-75%	
Q5:Where can we find H-K ATPase pump?				
A- Stomach	B-Sarcoplasmic reticulum	C-Mitochondria	D-some cells membane	

Y-2 2-D 3-B ⊄-C 2-V

Q1:List an example of both Co-transport and countertransport pumpsCo-transport:

Co-transport: Na+- glucose Na +- amino acid countertransport: Ca²+ - Na + exchange Na+-H+ exchange

-oundation Block Physiology team 441

🤯 Male Members

Abdulaziz Alassaf Muan Almoajil Feras Alzahrani Meshal Alqahtani Faisal Bin Moammar Ahmed Bin Radi Mansour Aldhalaan Rayan Ali Saad Alghadir Naif Al-Hasan Fahad Alkhattabi → Abdulaziz Alqusiyer Naif Alfahed Faisal Alshuaibi Bader Alshahrani Bader Rajeh

🍪 Female Members

Lama Bin Salamh Munira Alsharif Shimah Alsalhi Albandry Bin Habda Raaoum Jabor Arwa Alenzi → Ayah Sayed → Lama Aleyadhy Lujain Alkhalaf Layan Almasri Deema Almuhaimel Ghadah Alarify Asma Eidah Reema Alrashedi Sara Alhomaidhi Raneem Alanazi Jumana Alqahtani Sahar Alhakami Waad Alhowti Maha Aljarbaa

Team Leaders

Alanoud albawardi Nawaf alshehri

Edited by : Faye Wael Sendi

