8-Blood physiology 2 (3-Anemia and polycythemia)

Team Leaders

★ Alanoud albawardi★ Nawaf alshehri

Editing File

Foundation Block Physiology team 441

Objectives

At the end of this lecture student should be able to:

- Summarize the synthesis of Hemoglobin and Its structure, functions, types of HB.
- Describe essential elements needed for RBC formation (proteins,vitamins: B12, Folic acid, Vitamin C).
- Describe the process of Vit B12 Folic Acid ,absorption and its malabsorption.
- Recognize hemoglobin structure and its functions.
- Discuss iron metabolism (absorption, storage, transport).
- Describe the fate of old RBC.
- Describe anemia and its causes ,physiological consequences and clinical picture.

• Know how to differentiate between the different types and causes of anemia.

• Recognize causes of polycythemia, Define, and physiological consequence.

- Globular protein
- Heme + Globin

Synthesis:

It occurs in the mitochondria of the developing RBC in bone marrow.

1- Transferrin: attaches to surface receptor.
 2-Iron (F2+) is released and transported to mitochondria where it combines with protoporphyrin ring to form heme.
 3- Heme combines with
 α and β protein chains formed on the ribosomes to make hemoglobin.

★ Haemoglobin

Types of Hb;

of normal Hb:

- -Hb A (2 alpha & 2 beta chains) (adult Hb) (98%).
- -Hb A2 (2 alpha & 2 delta chains) (2%).
- -Hb F (2 alpha & 2 gamma chains) (Hb of intrauterine life)(fetal). (Higher affinity to oxygen , extract the oxygen of the mother's blood (Hb-A)).

Types of Hb; of abnormal Hb:

1-Thalassemia: Decreased synthesis of the globin polypeptide chains.(Hb-A).

2-Sickle cell anaemia :

Abnormal sequence of the amino acids in the globin polypeptide chains. (There is no decrease in synthesis of globin).

*Abnormality in the polypeptide chain leads to an abnormal Hb (hemoglobinopathies.) e.g. thalassemias, sickle cell (HbS).

Extra:

Why females have lower Hemoglobin levels than males?

The main reason is not menstrual cycle, but the Androgens (Especially Testosterone), They speed up the process of Erythropoiesis.

★ Haemoglobin

Function of Hb:

1- Transportation of respiratory gases.

 Carriage of O2: Hb reversibly bind O2 to form oxyhemoglobin, affect by pH, temperature, H+.

 Carriage of CO2: Hb bind CO2 = carboxyhemaglobin.

2- Buffer: (any protein acts as a buffer).

Breakdown:

(Hb is broken into its component).

1- globin; >> (amino acids) Protein pool. 2- Haem ; >> Iron(reused). >> Porphyrin is converted to bilirubin.

* Jaundice is caused by buildup of bilirubin, which is a waste material in the blood results from the breaking down of Hb.

Structure:

-Consist 4 chains each formed of heme & polypeptide chain (globin).
- Composed of **4 subunits** (2 alpha & 2 beta chains), each unit contains haem (iron-porphyrin).
-iron in the haem is ferrous (Fe++), **combines reversibly** with oxygen.
-Heme consist of protoporphyrin ring + iron (F2+).

-Each Hemoglobin molecule can have 4 Oxygen molecules(O2). -Accounts for more than 95% of protein in RBC. -Concentration of Hb in the Blood Measured as g/dl (grams per deciliter, or per 100 ml). -It is a Globular protein.

Iron in the haem combines reversibly with oxygen and carbon dioxide reversibly . But , irreversibly with carbon monoxide.

إذا مسك الهيموجلوبين في CO وماتركه يعني irreversible يصير فيه تسمم. Carbon Monooxide poisining.

Essential elements for RBCs formation and maturation:

★ Nutrients required for Erythropoietin:

★ Vitamin BI2 and Folic acid:

Importance:

- final <u>Maturation factor</u> for the RBCs .
- Essential for <u>DNA synthesis.</u> (early stages which have nucleus in uterus).

Dietary source:

meat, milk, liver, fat, green vegetables.

Manifestation of deficiency:

- Macrocytic (megaloblastic) anaemia.
- Abnormal large.
- Fragile cells & oval shape.
- Failure of nuclear maturation & division.
- short life span.
- reduced RBC count & Hb.

*Macrocytic (megaloblastic anemia).

	Vitamin B12	Folic acid
Origin of source	Animal sources only (meat, liver, milk,etc).	Animal and plant sources (meat, liver, fruits, vegetables). Easily destroyed by cooking.
Storage	In the liver in large amounts , enough for 3-4 years.	In the liver in very small amounts.
Causes of deficiencies	1- Defective absorption (pernicious anaemia).	1- Dietary Deficiency (Important cause).

	 2- <u>Defective storage</u> (liver diseases). 3- Dietary deficiency (very rare). 	2- Defective absorption. 3- Defective storage (liver diseases).
Absorption	Intrinsic factor is secreted by parietal cells of the stomach to bind vitamin B12 and helps its absorption. Absorption occurs in <u>terminal ileum</u> , so macrocytic anaemia occurs in: 1- distal small intestine diseases. 2-deficiency of intrinsic factor lead to malabsorption of vit B12 (pernicious anaemia).	Mainly in the jejunum.

★ iron:

1-iron:

2-Iron <u>storage(1gm)</u>:

Total amount in the body = 3- 5 gm, distributed as follows:

1- Hb (65-75%).

2-storage iron (available) (20-30%) in the liver, spleen & bone marrow (ferritin).

3-intracellular oxidative enzymes(1%)(non-available).

4-transport or plasma iron. Myoglobin (4%).

-site: reticuloendothelial cells (liver, spleen, bone marrow).

-Iron is stored in two forms:

- Ferritin: (apoferritin + iron).
- Haemosiderin (one of the complications of excessive blood transfusion): insoluble complex molecule in the liver, spleen, bone marrow.

Causes:

1 – Blood loss (the most important cause).

- 2 Dietary deficiency.
- 3 Defective absorption.
- 4 Defective storage (liver diseases).

Results in blood film: Microcytic anemia.

- Phosphates, phytates & oxalates in diet.
- Achlorhydria (decreased Hcl) , gastrectomy.
- Malabsorption syndromes or chronic diarrhea.

10 - 20 mg/day.

★ iron:

1-Iron in food: is in the oxidized form (ferric)(Fe³+), to be absorbed it is reduced to the ferrous state (Fe²+).
 2-When Ferric reaches the stomach:

Reduction in the stomach

3-Duodenum & upper part of small intestine:
Active transport of ferrous ions at the luminal border.
once in the intestinal mucosal cell iron is attached to a non-ferritin protein carrier & either;
transported across the serosal border to be picked up by transferrin.
(transport protein).
Or
stored as ferritin by combining with apoferrtin.

(carrier protein).

Absorption in the duodenum & upper part of small intestine.

transferrin : glycoprotein + iron Apotransferrin: glycoprotein without iron.

Rate of absorption is determined by the rate of iron loss from the body. And is regulated by the hepatic protein (Hepcidin).

11-Iron <u>excretion</u>:

- 0.5 -1.0 mg [(mainly feces, skin) ,urin, cutting hair and nails].
- Daily loss of iron is 0.6 mg/day in males & 1.3 mg/day in females.

Normally, 10- 15% of ingested iron will be absorbed. It's regulated by the protein (hepcidin).

The rate of iron loss from the body

12-sources :

Animal and plant (Liver, beef, meat,fruits,mutton, fish, egg yolk,beans,lentils & green vegetables).

(عرض وليست مرض)

Definition:

Decreased Hb concentration, the number of RBC, and Oxygen supply to tissues below the normal level of the same age and gender.

Due to:

- Decreased RBCs count below normal level for same age and gender.

- Hb load in each RBC (MCH) below normal level.

Signs and symptoms:

are due to vygen supply to tissues. **depending on the severity:**

Dr.Nervana Mostafa notes these tables isn't Important;

stimulation.

This slide was found only in female slides ★ Full (Complete) Blood Count (FBC, CBC):

Complete blood count	Result	Reference values
WBC	7.36 × 10.e9/L	(4-11)
RBC	5.12 ×10.e12	(4.2-5.5)
HGB	15.4 g/dl	(12-16)
нст	45%	(37-47)
MCV	87.9 fl	(80-94)
MCH	30 pg	(27-32)
MCHC	34 g/dl	(32-36)
RDW	11.4 %	(11.5-14.5)
Platelet count	183 × 10.e9/L	(140-450)
MPV	9.43 fl	(7.2-11.1)

Dr.Nervana Mostafa notes these ta

★ Types Of Anemia (Hemoglobin is low) :

01 Microcytic hypochromic:	02 Normocytic normochromic:	02 Macrocytic (megaloblastic):
<u>Causes:</u> <u>Iron deficiency.</u>	Causes: Acute blood loss.	<u>Causes:</u> <u>Folic acid (folate) or vit B12</u> <u>deficiency.</u>
 microcytic = smaller size. hypochromic = less hemoglobin. increased zone of central pallor. -decrease in MCV and MCH. anisocytosis = variation in size. -poikilocytosis= variation in shape. 	 Normal HB (in each RBC). normal RBCs' size. normal MCV and MCH. The decrease in the RBCs count will lead to decrease the total number of Hb in the blood. 	- The hypersegmented neutrophil and also that the RBC are almost as large as the lymphocyte. - There are fewer RBCs. - increase in MCV and MCH.
 1-The RBC's = smaller than normal. 2- Increased zone of central pallor. 3-this is indicative of a microcytic (smaller size of each RBC) and Hypochromic (less hemoglobin in each RBC) anemia. 	1- Hb level is low. 2-Normal RBCs' size. 3-Decreased number Of RBCs.	1-Hypersegmented neutrophil and also the RBCs are almost as large as the lymphocyte. 2- There are fewer RBCs.
4-Increased anisocytosis (variation in size) 5-Increased poikilocytosis (variation in shape).		<u>Note:</u> the hypersegmented neutrophils and also that the RBC are almost as large as the lymphocyte. <u>Note:</u> that there are fewer RBCs.
Decrease in Hb content, RBCs count, PCV(HCT value) MCV= 70 µ ³ MCH=22 pg	Decrease in Hb content, RBCs count, PCV(HCT value) MCV= 90 µ ³ MCH=30 pg	Decrease in Hb content, RBCs count, PCV(HCT value) MCV= 110 µ ³ MCH=38 pg
	human barrier human barrier human barrier	

L

i.

normochromic	hypochromic	hyperchromic
0	0	0
Other causes Aplastic Hemolytic Acute hge	Iron deficiency anemia	Folate or vitamin B12 deficiency
– MCV – MCH	мсv мсн	MCV MCHC

Groups At High Risk of anaemia:

Treatment of Anemia:

Treatment depends on the *cause* and *severity*, but may include:

- Vitamin and mineral supplements. (in the case of deficiency).
- Iron injections . (if the person is very low on iron).
 - Vitamin B12 oral or by injection . (required for pernicious anaemia).
 - Folic acid supplement.
 - Blood transfusions . [if required (Usually in severe cases)].

This slide was found only in male slides

Anemia and polycythemia:

Anemia is decrease in RBC mass as determined by Hct or Hb values below reference level.

The major causes of anemia are:

1- Decreased RBC production. 2-Increased RBC destruction. 3-RBC Loss without destruction.

Polycythemia is increase in RBC mass as determined by Hct or Hb values above reference level for age and gender.

Haematological indices:

	Indices	Male	Females					
Н	lematocrit (Hct)	(%)	47	42				
Red b	lood cells (RBC)	5.6	4.8					
He	moglobin (Hb) (g	16	i 14					
Mean cor	puscular volume	9	0-95					
Mean corpu	scular hemoglob	oin (MCH) (pg)		29				
Mean corpusc (N	ular hemoglobir ICHC) (g/dL of ce	n concentration ells)	34					
	MCV is t measur useful							
(MCV) Mean corpuscular volume	The average volume of the RBCs.	Expressed in femtoliters (fL) or cubic micrometers.	Hct * 10 = 10 ⁶ RBC () μL	 ↑ 95 fl : Macrocytic anemia. Normal value (90-95 fl): normocytic anemia. ↓ 90 fl : Microcytic anemia. 				
(MCH) Mean corpuscular Hb	The average amount of hemoglobin inside a RBC.	Expressed in picograms (pg).	Hb * 10 =	I ↑ 33 pg: Hyperchromic. Normal value. (27-33 pg): normochromic ↓ 27 pg: Hypochromic.				
(MCHC) Mean corpuscular concentration	The average concentration of hemoglobin in the RBCs.	Expressed as (gm/dl).	Hb * 10 =	Normal value (32-36 g/dl) of RBCs.				
Reticulocyte index	Reticulocytes are immatu	Hematocrit = Normal Hematocrit	<pre>i = : = : = : = : = : = : = : = : = : =</pre>					
				i anemia) i				

Indices	Hematocrit (Hct)	RBC	Hb	MCV	МСН	мснс
Male	47%	5.6x10 ⁶ /L	16 g/dL			34 g/dL of
Females	42%	4.8x10 ⁶ /L	14 g/dL	90-95 fl	29 pg	cells

Test yourself

Q1: is a special type of megaloblastic anaemia								
A- sickle cell B- pernicious C- Haemolytic D- No anemia anemia anemia								
Q2 : Which blood count shows the size of RBCs ?								
A- MCH	B- HCT	C- MCHC	D- MCV					
Q3: Which type of Hb has highest affinity to oxygen ?								
A-Hb A B-HB A2 C-Hb F D-None								
Q4 : B12 which combine with intrinsic factor , absorbed in and stored in								
A- terminalB- liverC- stomachD- stomachileum - liver- terminal ileum-Terminal ileum-Liver								
V-7 J-E D-Z 8-L SAQS								

simone citylomaeH-S

l- cause and severity

-oundation Block Physiology team 441

🤯 Male Members

Abdulaziz Alassaf Muan Almoajil Feras Alzahrani Meshal Alqahtani Faisal Bin Moammar → Ahmed Bin Radi Mansour Aldhalaan → Rayan Ali Saad Alghadir Naif Al-Hasan Fahad Alkhattabi Abdulaziz Alqusiyer Naif Alfahed Faisal Alshuaibi Bader Alshahrani Bader Rajeh

🍪 Female Members

Team Leaders

Alanoud albawardi Nawaf alshehri

Edited by : Alanoud Albawardi

