
Prof. Hanan Hagar
Pharmacology Unit
Medical College
King Saud University

What students should know:

Student should be able to:

- Identify the classification of anticholinergic drugs
- •Describe pharmacokinetics and dynamics of muscarinic antagonists
- Identify the effects of atropine on the major organ systems.
- list the clinical uses of muscarinic antagonists.
- know adverse effects & contraindications of anticholinergic drugs.
- Identify at least one antimuscarinic agent for each of the following special uses: mydriasis, cyclopedia, peptic ulcer & parkinsonism.

Antimuscarinic Drugs

According to source

Natural

- •Atropine (Hyoscyamine)
- Hyoscine (scopolamine)

Semisynthetic

Synthetic

Antimuscarinics Muscarinic antagonists

Semisynthetic & Synthetic atropine substitutes

Homatropine (semisynthetic)

Tropicamaide

Benztropine

Pirenzepine

Ipratropium

Glycopyrrolate

Oxybutynin, Darifenacin

Antimuscarinic Drugs

According to structure

Tertiary amines

- •Atropine (Hyoscyamine)
- Hyoscine (scopolamine)
- lipid soluble

Quaternary ammonium

- Glycopyrrolate
- Ipratropium
- water soluble

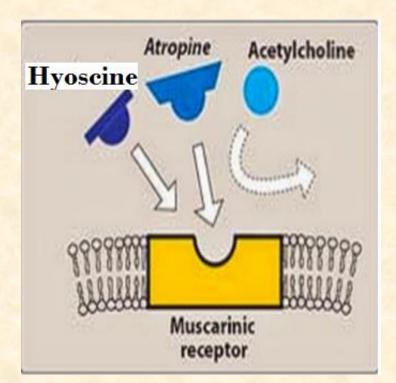
Antimuscarinic Drugs

According to selectivity

Non-selective

- Atropine, Hyoscine
- Ipratropium

Selective


- Pirenzepine(M₁)
- Darifenacin(M₃)

MECHANISM OF ACTION

Reversible competitive blockade of muscarinic Receptors (reverses muscarinic effects of cholinergic drugs).

Atropine & hyoscine can block all muscarinic

receptors (not selective).

PHARMACOKINETICS

Natural alkaloids

- Atropine (Hyoscyamine)
- Hyoscine (scopolamine)
- Lipid soluble
- Good oral absorption
- Good distribution
- Cross blood brain barrier (have CNS actions)
- Hyoscine has better BBB penetration.

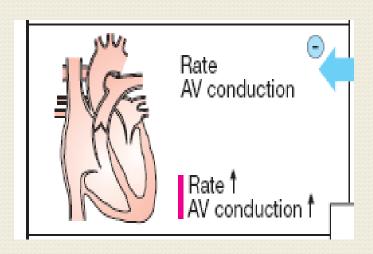
CNS:

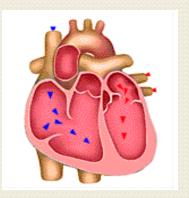
- Atropine at clinical dose, initial stimulation followed by depression (sedative effect).
- O Hyoscine →sedative effect
- Antiemetic effect (block vomiting center).
- o Antiparkinsonian effect (block basal ganglia).

Cholinergic actions	Anticholinergic actions
Eye Circular muscle of iris Contraction (miosis) Ciliary muscles Contraction accommodation for near vision	relaxation (mydriasis) relaxation (cycloplegia) loss of accommodation
Heart bradycardia (H.R.)	Tachycardia († H.R)
Urinary bladder Contraction of muscles Relaxation of sphincter Urination	Relaxation of muscles contraction of sphincter Urinary retention

Cholinergic drugs	Anticholinergic drugs
Exocrine glands Increase of sweat, saliva, lacrimal, bronchial, intestinal secretions	Decrease all secretions
GIT ↑ peristalsis ↑ secretion relaxation of sphincter Diarrhea	 ↓ peristalsis ↓ secretion Contraction of sphincter constipation
Lung Bronchoconstriction bronchial secretion	Bronchodilatation Decrease secretion

CNS:

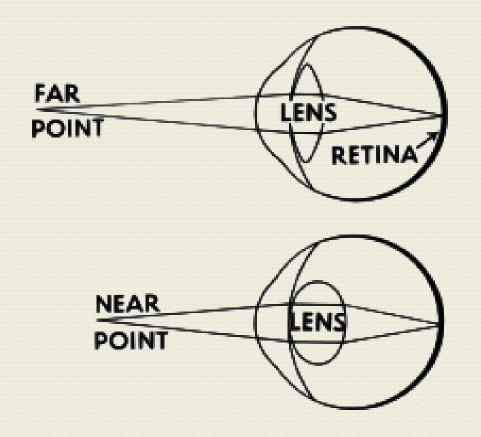

- Atropine at clinical dose, initial stimulation followed by depression (sedative effect).
- O Hyoscine →sedative effect
- Antiemetic effect (block vomiting center).
- o Antiparkinsonian effect (block basal ganglia).

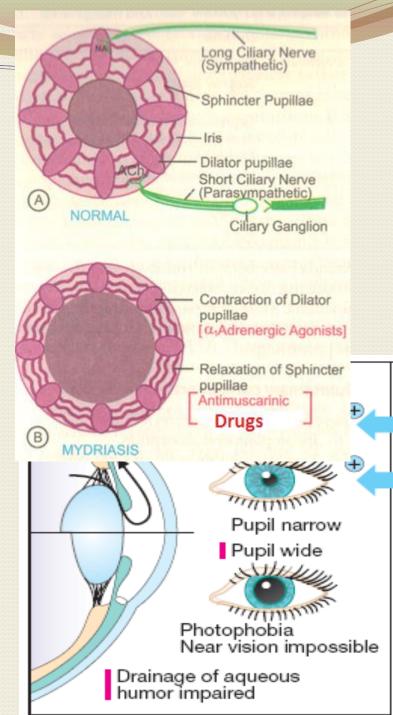

CNS:

High doses of atropine cause cortical excitation, restlessness, disorientation, hallucinations, and delirium followed by respiratory depression and coma.

CVS:

- •Atropine causes initial bradycardia followed by tachycardia due to blockade of M2-receptors on SA node.
- •↑ **AV conduction** (+ ve dromotropic effect).
- •Atropine does not influence BP.
- o↓ Vasodilatation induced by cholinergic agonists.
- oToxic dose: Cutaneous vasodilatation→ (atropine flush).


Eye:


Passive mydriasis

due to paralysis of circular muscle

- Cycloplegia (loss of near accommodation)
 due to <u>paralysis</u> of ciliary muscle.
- **Loss of light reflex.**
- Increase I.O.P # glaucoma.

Eye:

Respiratory system

Relaxation of bronchial muscles (bronchodilators)

↓ Bronchial secretion $\rightarrow \uparrow$ viscosity

GIT:

- Dryness of mouth
- ↓ Gastric acid secretion
- Relaxation of smooth muscles.
- \circ ↓ GIT motility \rightarrow Antispasmodic effect.
- ↑ Sphincter contractions
- Constipation

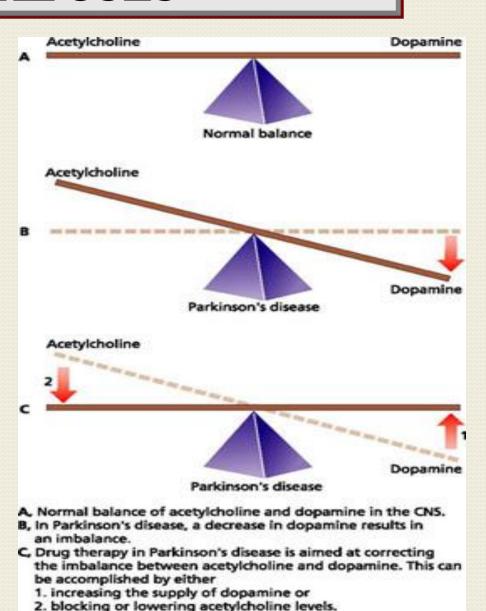
Genitourinary tract:

- Relaxation of smooth muscles of urinary bladder.
- Sphincter contraction.
- Urinary retention.
- # Contraindicated in old men with prostatic hyperplasia.

Normal prostate

Secretions

- \downarrow Salivary secretion \rightarrow (Dry mouth).
- \downarrow Sweating \rightarrow dry skin
- In children modest doses → "atropine fever"
- **↓** Bronchial secretion → ↑ Viscosity
- **↓** Lacrimal secretion → Sandy eye


CLINICAL USES

- Parkinsonism
- Vomiting (Motion sickness)
- Pre-anesthetic medication
- Asthma & COPD
- Peptic ulcer
- Intestinal spasm as antispasmodics
- Urinary urgency, urinary incontinence

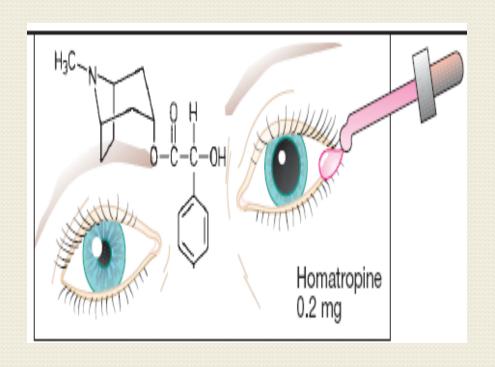
CLINICAL USES

CNS:

Parkinsonism e.g. Benztropine

CLINICAL USES

CNS:


Motion sickness e.g. Hyoscine

Ophthalmic disorders:

Ophthalmoscopic examination of retina

e.g. Tropicamide, homatropine

GIT:

e.g. Glycopyrrolate, Hyocine butyl bromide.

- Intestinal spasm
- Biliary and renal colics.
- Irritable bowel syndrome

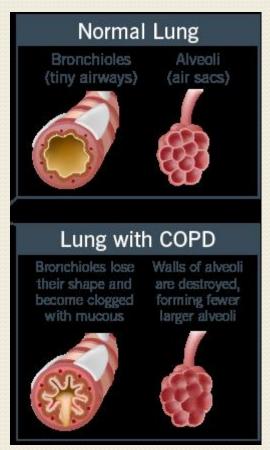
Atropine + diphenoxylate

used for treatment of Traveler's diarrhea with opioid

GUT:

Urinary incontinence & Urinary urgency caused by minor inflammatory bladder disorders

e.g. Oxybutynin


e.g. Darifenacin

Respiratory disorders:

Bronchial asthma & chronic obstructive pulmonary disease (COPD)

e.g. Ipratropium (inhalation)

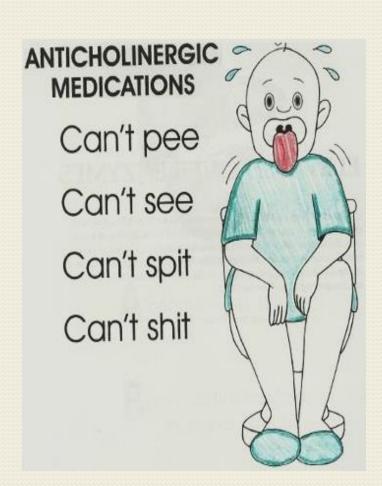
Cardiovascular uses:

Sinus bradycardia

atropine IV/IM

Used to increase heart rate through vagolytic effects, causing increase in cardiac output.

Cholinergic poisoning


Cholinesterase inhibitors "insecticides". Mushroom poisoning.

Atropine reverses muscarinic effects of cholinergic poisoning.

ADVERSE EFFECTS

- Confusion, agitation, delirium
- Mydriasis, blurred vision
- Dry mouth, hot flushed skin
- Tachycardia
- Constipation, urinary retention
- ↑ Body temperature (hyperthermia)

THE MNEMONIC

Hot as Hell fire

CONTRA-INDICATIONS

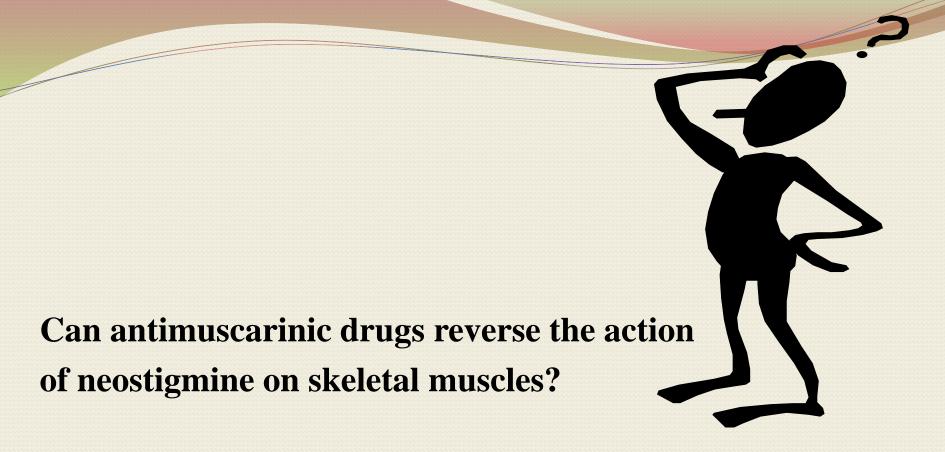
- Glaucoma (angle closure glaucoma)
- Tachycardia secondary to thyrotoxicosis or cardiac insufficiency
- Old patients with prostate hypertrophy.
- Paralytic ileus
- Constipation
- Children in case of atropine.

Uses of antimuscarinic drugs

Drugs	organ	Uses
Atropine	CNS	Pre-anesthetic medication Antispasmodic
Hyoscine	CNS	Pre-anesthetic medication, Motion sickness, antispasmodic
Benztropine	CNS	Parkinson's disease
Homatropine Tropicamide	Eye	Fundus examination
Ipratropium	Respiratory system	asthma, COPD, inhalation
Pirenzepine	Stomach	Peptic ulcer
Glycopyyrolate	GIT	Antispasmodics in hypermotility
Oxybutynin Darifenacin	UT	Urinary urgency, Urinary incontinence

SUMMARY

- Antimuscarinics reverse action of cholinomimetics on muscarinic receptors.
- Are useful in many applications including intestinal spasm, urinary urgency, vomiting, parkinsonism, asthma and peptic ulcer.
- Are contraindicated in constipation, Prostate hypertrophy, tachycardia and glaucoma.


Quiz 1?

- A patient is brought into the emergency room. Upon examination you find the following: a high fever, rapid pulse, no bowel sounds and dilated pupils that do not respond to light. His lungs are clear. His face is flushed and his skin is dry. He is confused, disorientated and reports 'seeing monsters'. Based on these symptoms, you suspect he has been 'poisoned'. Which of the following, is the MOST obvious cause of poisoning?
- A. Neostigmine
- B. Physostigmine
 - C. Atropine sulfate
- D. Acetylcholine

Quiz 2?

- You are working in the post anesthesia care unit of a hospital. You have just received a patient back from surgery and you are monitoring his status. Knowing that the patient has received atropine, which of the following statements/observations is UNEXPECTED?
- A. The patient is complaining of extreme thirst.
- B. The patient complains he is unable to clearly see the clock located just across from him.
- C. The patient's heart rate is elevated.
- D. The patient reports he has cramping and diarrhea.

What is the antidote that can be used in atropine toxicity?

Thank you

Questions?