

By the end of this lecture you will be able to:

- Perceive the differences between anaphylactic shock & other types of shock
- Recognize its nature, causes & characteristics
- Specify its diagnostic features
- Identify its standard emergency management protocol
- Justify the mechanism of action & method of administration of each of the different used drugs to limit its morbid outcomes.

2

ANAPHYLAXSIS

Is a sudden, severe allergic reaction affecting the whole body symptoms including:

- > Rash
- Mucosal swelling
- Difficulty breathing
- Reduced blood pressure

What TYPE of shock is it ???

ANAPHYLACTIC SHOCK

A life-threatening allergic reaction that causes shock (hypoperfusion) and airway swelling.

Generalized circulatory derangement causing multiple organ HYPOPERFUSION [Inadequate oxygen delivery to meet metabolic demands] & strong sympathetic activation

→ when intense or sustained enough, irreversible derangements sets → permanent functional deficit or death

- Hypovolemic Haemorrhage / fluid loss (plasma, ECF)
- **Cardiogenic**Inability to contract & pump→ myocardial infarction
- **Ubstructive**Extracardiac obstruction → Pul. embolism, cardiac tamponade
- **Distributive**Septic shock, neurogenic, anaphylactic shock.

Severe, life-threatening, generalized or systemic hypersensitivity reaction in response to allergen.

ANAPHYLACTIC SHOCK

Nature

Belong to TYPE I HYPERSENSITIVITY REACTION

Occurs after exposure to foreign substances [antigen]; food, insect or animal venom, drugs, blood products,

N.B. Non-Immunologic Anaphylaxis (ANAPHYLACTOID)

Exogenous substances directly degranulate mast cells → Radiocontrast dye, Opiates, **Depolarizing drugs, Dextrans**

- ♣ Rapidly developing [5/30 min. → can be hours]
- Severe, life-threatening
- Multisystem involvement
- Mortality: due to respiratory (70%) or cardiovascular (25%).

ANAPHYLACTIC SHOCK THERAPY PROTOCOL

1 Life-threatening problems:

Airway: swelling, hoarseness, stridor

Breathing: rapid breathing, wheeze, fatigue, cyanosis, SpO, < 92%, confusion

Circulation: pale, clammy, low blood pressure, faintness, drowsy/coma

2 Adrenaline (give IM unless experienced with IV adrenaline) IM doses of 1:1000 adrenaline (repeat after 5 min if no better)

 Adult. 500 micrograms IM (0.5 mL)

Child more than 12 years: 500 micrograms IM (0.5 mL)

 Child 6 -12 years: 300 micrograms IM (0.3 mL)

Child less than 6 years: 150 micrograms IM (0.15 mL)

Adrenaline IV to be given only by experienced specialists

Titrate: Adults 50 micrograms; Children 1 microgram/kg

3 IV fluid challenge:

Adult - 500 - 1000 mL

Child - crystalloid 20 mL/kg

Stop IV colloid if this might be the cause of anaphylaxis

4 Chlorphenamine

(IM or slow IV)

10 mg

5 mg

2.5 ma

250 micrograms/kg

5 Hydrocortisone

(IM or slow IV)

200 mg

100 ma

50 mg

25 mg

Child 6 months to 6 years

Child less than 6 months

Adult or child more than 12 years

Child 6 - 12 years

6. Bronchodilators 7. Glucagon 8. H₂ Blockers

ANAPHYLACTIC SHOCK THERAPY PROTOCOL

ADJUVANT TO 2ND LINE

- **To support the respiratory & circulatory deficits**
- To halt the existing hyper-reaction

Objective of Therapy

4To prevent further hyper-reaction of immune system

Biphasic phenomenon

2nd release of mediators without re-exposure to antigen (in up to 20%) Clinically evident 3-4 h after the initial manifestations clear.

A Sympathomimetic.

Mechanism

A nonselective AD agonist $[\alpha_1, \alpha_2, \beta_1, \beta_2]$

Actions

As an α -AD agonist \rightarrow

- ♣Reverses peripheral vasodilation → maintains BP & directs blood flow to major organs
- **♣** dema → reverse hives, swelling around face & lips & angioedema in nasopharynex & larynx

As a β -AD agonist \rightarrow

- ➡ Dilates bronchial airways + ➡ histamine & leukotriene release from mast cells $\rightarrow \beta_2$ effect
- $+\uparrow$ force of myocardial contraction $\rightarrow \beta_1$ effect

Contraindications

Rare in a setting of anaphylaxsis Not given > 40 y cardiac patient

ADRS

Dysrrhythmias

PHYSIOLOGICAL ANTAGONIST

Attenuates the severity of IgEmediated allergic reactions.

Indication | **DRUG OF CHOICE**

ADRENALINE

Administration

Best is (IM) route in anaphylaxis. Why?

- Easily accessible
- ♣ Greater margin of safety ◆ no dysrrhythmias as with IV
- **♣** No need to wait for IV line **→** if present
 - **→** given by physician under monitoring

Repeat every 5-10 min as needed Patients observed for 4-6 hours. Why? Fear of biphasic anaphylaxis

N.B. Caution

Patients taking β-blockers either are →

- **4**Refractory; as it may antagonize β effects of adrenaline
- ♣Rebound hypertension → [unopposed α effect], specially when adrenaline is repeated

Auto-injectors Kits;

Disposable, prefilled devices → automatically administer a single dose of epinephrine in emergency

If hypotension persist → start dopamine. Why not noradrenaline?

CORTICOSTEROIDS

It can not be used alone → not life saving Given slowly IV or IM

- Reverse hypotension & bronchoconstriction → → release of inflammatory mediators (anti-chemotactic & mast cell stabilizing effects)
- Also decrease mucosal swelling and skin reaction

This is through immediate GCs action on Membrane-bound receptors → modulating levels of 2nd messengers → (within seconds or minutes) → Non-genomic action (genomic action is slow may take hrs - days)

May help to limit biphasic reactions → → allergic mediators.

H₁ BLOCKERS

It can not be used alone → not life saving Given slowly IV or IM (e.g. pheniramine)

Though mast cells have already de-granulated, yet these drugs can still help to counteract histamine-mediated vasodilatation & bronchoconstriction

May help to limit biphasic reactions by blocking histamine receptors

H₂ BLOCKERS

The significance of H2 blockers is not established, these drugs are associated with serious adverse drug interactions. Proton pump inhibitor (e.g. Pantoprazole) is safer and given once.

ANAPHYLACTIC SHOCK THERAPY PROTOCOL

ADJUVANT TO 2ND LINE

Bronchodilators: Salbutamol nebulizer / Ipratropium nebulizer / Aminophylline IV

Glucagon: For patients taking β-blockers & with refractory

hypotension → 1 mg IV q 5 minutes until hypotension resolves

H₂ blocker: Ranitidine 150 mg IV / No cimetidine in elderly, renal/

hepatic failure, or if on β-blockers.??

BRONCHODILATORS

Inhalational

- *Salbutamol→ β_2 -AD agonist →short acting, rapid relief onset relax bronchial smooth muscle & may decrease mediators release from mast cells & basophils
- It may also inhibit airway microvascular leakage
- ***Ipratropium→** Anticholinergic → longer duration of action → **↓** secretion Less rapid in action

Parentral

Aminophylline IV → may be useful in the treatment of anaphylaxis when inhaled broncho-dilators are not effective & bronchospasm is persistent

Given in hospital setting as levels of drug should be **Therapeutically Monitored** (has narrow therapeutic index).

Drug of choice for severe anaphylaxis in patients taking β -blockers

Has both positive inotropic & chronotropic effects on heart $\rightarrow \uparrow$ cardiac cyclic AMP \rightarrow an effect entirely independent of adrenergic receptors, that is why effective in spite of β -adrenergic blockade. Efficacy of acting on bronchi < heart \rightarrow no evident bronchodilation.

