Respiratory block

Phospholipids of clinical significance

objectives

By the end of this lecture the First Year students will be able to:

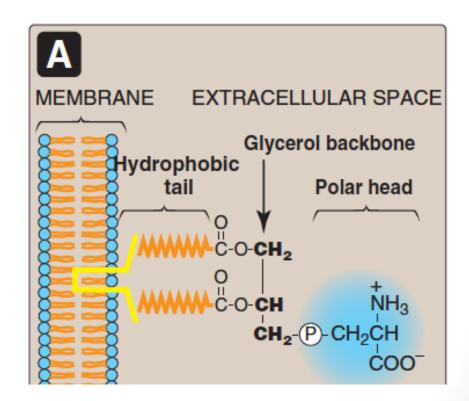
- Identify the types and functions of phospholipids
- Discuss the physiological importance of phospholipids
- Understand the role of glycerophospholipids in lung surfactant and their clinical implications in respiratory distress syndrome (RDS)
- Identify the classes and physiological functions of phospholipase enzymes

overview

- Types and functions of phospholipids
- Glycerophospholipids: Types, functions and role in lung surfactant, cell signaling and protein anchoring
- Respiratory distress syndrome (RDS)
- Sphingophospholipids
- Phospholipids in lipoprotein particles
- Phospholipases: Types and functions

phospholipids

- Phospholipids are polar, ionic compounds that contain an alcohol group attached either to:
 - Diacylglycerol or
 - Sphingosine
- Major lipids of cell membranes

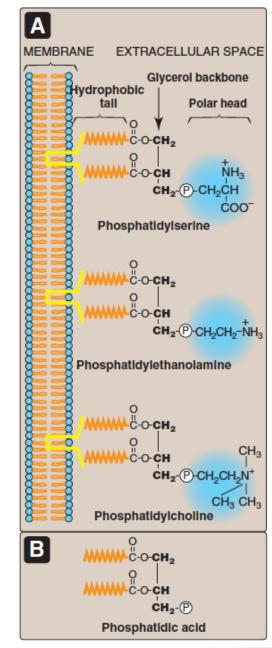

Two classes:

- Glycerophospholipids
- Sphingophospholipids

phospholipids

 Their hydrophobic (nonpolar) portion is attached to the membrane

 Their hydrophilic (polar) portion extends outward interacting with the aqueous environment



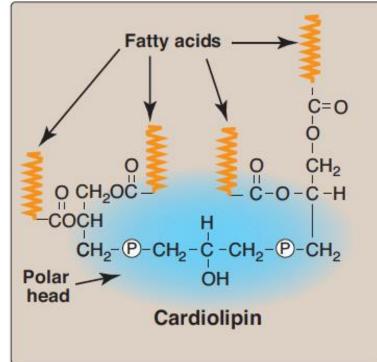
Functions of phospholipids

- Membrane-bound phospholipids act as:
 - Reservoir for intracellular messengers
 - Anchors to cell membranes
- Nonmembrane-bound phospholipids act as:
 - Lung surfactant
 - Components of bile (as detergents to solubilize cholesterol)

Glycerophospholipids

- Also called phosphoglycerides
- Contain glycerol
- A major class of phospholipids
- All contain phosphatidic acid (PA)
- PA is the simplest phospholipid

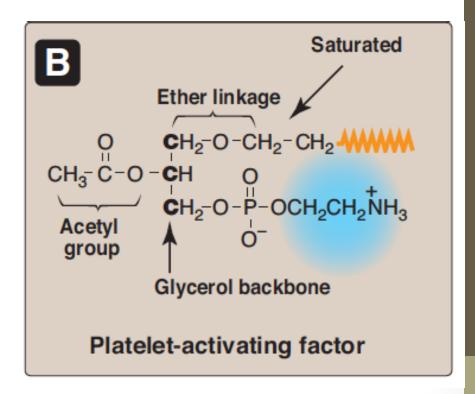
glycerophospholipids


Phospholipids are derived from PA such as:

Serine + PA	Phosphatidylserine (PS)	Cell signaling Blood clotting
Ethanolamine+PA	Phosphatidyl <mark>ethanolamine</mark> (PE) (cephalin)	
Choline + PA	Phosphatidyl <mark>choline</mark> (PC)(lecithin)	Lung surfactant
Inositol + PA	Phosphatidylinositol (PI)	Cell signaling
Glycerol + PA	Phosphatidyl <mark>glycerol</mark> (PG)	Lung surfactant

some examples

Cardiolipin


- Two molecules of PA joined to an additional molecule of glycerol through PO₄ groups
- In the inner mitochondrial membrane
- Function: maintenance of respiratory complexes of electron transport chain

some examples

Platelet activating factor (PAF)

- Binds to cell surface receptors
- Triggers thrombotic and acute inflammatory reaction

Role of PC in Lung surfactant

- Lung surfactant is a complex mixture of:
 - Lipids (90%) including Dipalmitoylphosphatidylcholine (DPPC)
 - Proteins (10%)
- Alveolar cells of the lungs are lined by the extracellular fluid layer
- Alveolar cells secrete DPPC (a major lung surfactant)

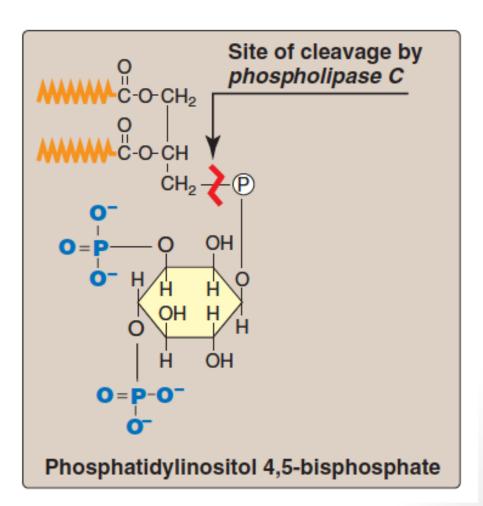
Role of PC in Lung surfactant

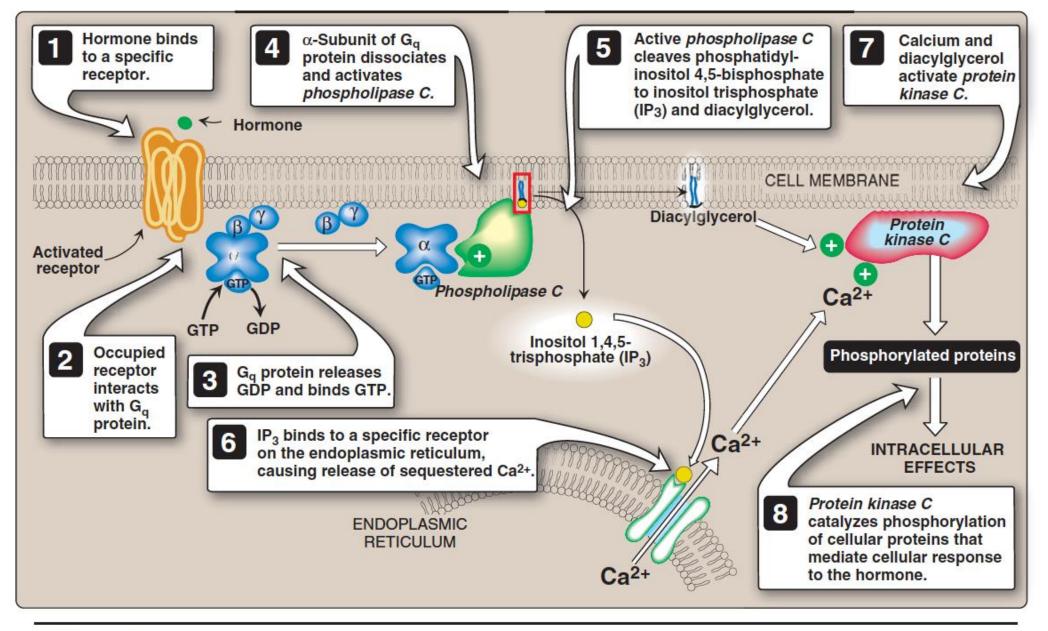
Surfactant decreases the surface tension of the fluid layer

• Reduces pressure needed to re-inflate alveoli

Prevents alveolar collapse (atelectasis)

Role of PC in Lung surfactant


Respiratory distress syndrome (RDS)


- In preterm infants due to deficiency of lung surfactant
- A major cause of neonatal death
- Treatment: Glucocorticoids to mother to promote lung maturation
- In adults due to damaged alveoli by infection or trauma

Role of PI in cell signaling

 Plays important role in intracellular signaling

 PI is part of calciumphosphatidyl inositol system

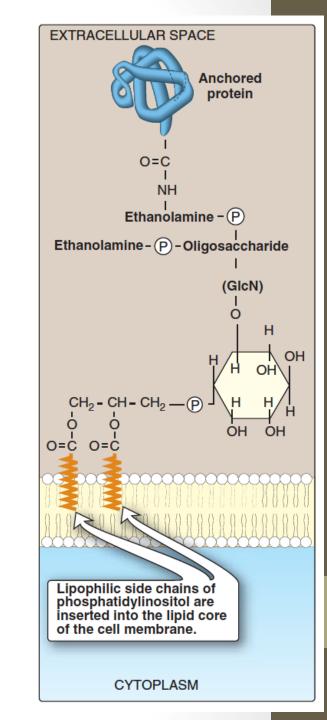
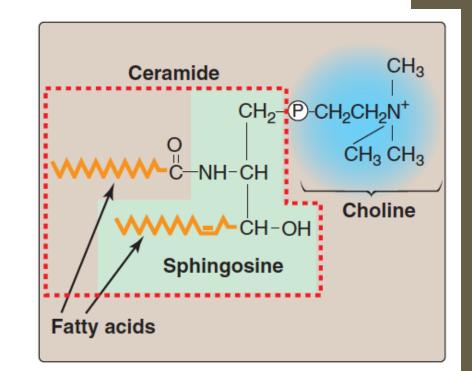


Figure 17.8

Role of inositol trisphosphate and diacylglycerol in intracellular signaling.

Role of PI in membrane protein anchoring

- Anchoring of proteins to membranes through carbohydrate-PI bridge
 Examples:
- Alkaline phosphatase (on the surface of small intestine)
- Acetylcholine esterase (on postsynaptic membrane of neurons)
- Anchoring proteins can be cleaved by phospholipase C enzyme



sphingophospholipids

 A long-chain fatty acid attached to sphingosine

• Example: Sphingomyelin

 An important component of myelin that protects and insulates nerve fibers

Figure 17.4

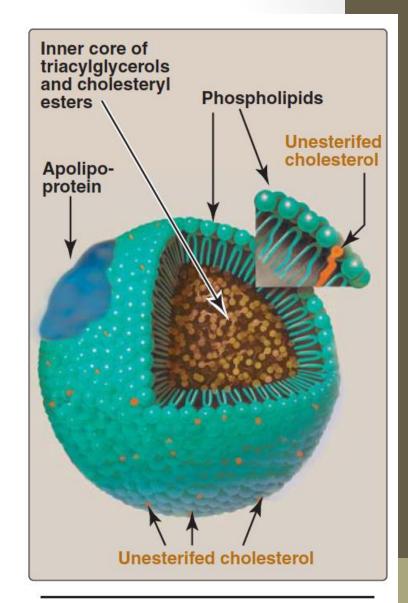
Structure of sphingomyelin, showing sphingosine (in green box) and ceramide components (in dashed box).

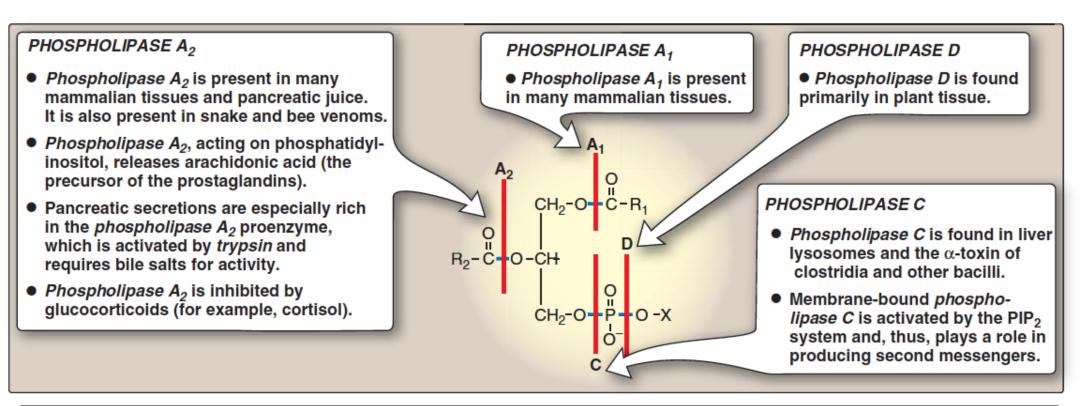
phospholipids in lipoprotein particles

• The outer core of lipoprotein particles is hydrophilic

 Contains phospholipids and free cholesterol

 Allows transport of core lipids in aqueous plasma




Figure 18.14 Structure of a typical lipoprotein particle.

Phospholipases

- Phospholipids are degraded by phospholipase enzymes
- Present in all tissues including pancreatic juice
- Glycerophospholipids are degraded by:
 - Phospholipase A₁, A₂, C, D
- Sphingophospholipids are degraded by:
 - Sphingomyelinase

Functions of Phospholipases

- Digestion of phospholipids by pancreatic juice
- Important for remodeling of phospholipids
- Production of second messengers
- Pathogenic bacteria produce phospholipases to dissolve cell membranes and spread infection

Figure 17.11 Degradation of glycerophospholipids by *phospholipases*.

Take home message

- Phospholipids are complex lipids that perform important physiological functions in the body
- Membrane-bound phospholipids are involved in cell signaling, protein anchoring and myelin protective functions
- Nonmembrane-bound phospholipids function as lung surfactant and as detergent in the bile
- Phospholipases are enzymes that degrade phospholipids
- They are important for remodeling of phospholipids

references

Lippincott's Illustrated Reviews, Biochemistry, 6th
Edition, Denise R. Ferrier, Lippincott Williams & Wilkins, USA, pp 201-207.