Drug Therapy Of Heart Failure

Dr. Aliah Alshanwani

Learning objectives

By the end of this lecture, students should be able to:

- Describe the different classes of drugs used for treatment of acute \& chronic heart failure \& their mechanism of action
- Understand their pharmacological effects, clinical uses, adverse effects \& their interactions with other drugs.

HEART FAILURE

Inability of the heart to maintain an adequate cardiac output to meet the metabolic demands of the body.

GAUSES OF MENRT FMDURE

disorder of
coronary arteries
high
blond pressurie

HEART FAILURE
cardionnyopathy

Acute or Chronic

Symptoms of Heart failure

- Tachycardia
- Decreased exercise tolerance (rapid fatigue)
- Dyspnea (pulmonary congestion)
- Peripheral edema
- Cardiomegaly.

Pathophysiology of CHF

\downarrow Force of contraction

Low C.O.
\downarrow Renal blood flow

Activate renin-angiotensin-
Aldosterone system
\downarrow Carotid sinus firing

Activate sympathetic system
\uparrow Sympathetic discharge

\uparrow Preload

\uparrow Afterload

Factors affecting cardiac output and heart failure

1- Preload

2- Afterload
3- Cardiac contractility

Drugs used in treatment of heart failure

I- Drugs that decrease preload:
1 - Diuretics
2 - Aldosterone antagonists
3 - Venodilators
II- Drugs that decrease afterload:
1 - Arteriodilators

Drugs used in treatment of heart failure

III- Drugs that decrease both preload \& afterload: (Combined arteriolo- \& venodilators)

1- Angiotensin converting enzyme (ACE) inhibitors
2- Angiotensin receptor antagonists
3- α_{1}-adrenoceptor antagonists
4- Direct vasodilators

Drugs used in treatment of heart failure

IV- Drugs that increase heart contractility:

1- Cardiac glycosides (digitalis)
2- β-adrenoceptor agonists
3- Phosphodiesterase inhibitors

I- Drugs that decrease preload

1-Diuretics:

Mechanism of action in heart failure :
reduce salt and water retention
\downarrow
decrease ventricular preload and venous pressure
\downarrow
reduction of cardiac size
\downarrow
Improvement of cardiac performance

I- Drugs that decrease preload

1-Diuretics:

Chlorothiazide

- first-line agent in heart failure therapy
- used in volume overload (pulmonary and/ or peripheral edema)
- used in mild congestive heart failure.

I- Drugs that decrease preload

1-Diuretics:

Furosemide

- a potent diuretic
- used for immediate reduction of pulmonary congestion \& severe edema associated with :
- acute heart failure
- moderate \& severe chronic failure

I- Drugs that decrease preload

2-Aldosterone antagonists:

Spironolactone

- non-selective antagonist of aldosterone receptor
- a potassium sparing diuretic
- improves survival in advanced heart failure

I- Drugs that decrease preload 2-Aldosterone antagonists:

Eplerenone

- a new selective aldosterone receptor antagonist
(does not inhibit other hormones such as estrogens \& androgens)
- indicated to improve survival of stable patients with congestive heart failure.

I- Drugs that decrease preload

3-Venodilators:

> A- Nitroglycerine B- Isosorbide dinitrate

- used I.V. for severe heart failure when the main symptom is dyspnea due to pulmonary congestion \& edema
- dilates venous blood vessels \& reduce preload.

II- Drugs that decrease afterload

1- Arteriodilators:

Hydralazine

- used when the main symptom is rapid fatigue due to low cardiac output
- reduce peripheral vascular resistance

III- Drugs that decrease both preload \& afterload

1-Angiotensin converting enzyme (ACE) inhibitors:

- considered as first-line drugs for
chronic heart failure along with diuretics
- first-line drugs for hypertension therapy.

Angiotensin converting enzyme inhibitors MECHANISM OF ACTION

VASOCONSTRICTION
VASODILATATION

SYMPATHETIC
1 Angiotensinogen

BRADYKININ

Breakdown

ACE Inhibitors

Pharmacological actions:

1 - Decrease peripheral resistance (Afterload)
2 - Decrease Venous return (Preload)
3 - Decrease sympathetic activity
4- Inhibit cardiac and vascular remodeling associated with chronic heart failure Decrease in mortality rate

ACE Inhibitors

Captopril, Enalapril and Ramipril

 Pharmacokinetics:- rapidly absorbed from GIT after oral administration
- food reduce their bioavailability

Enalapril , Ramipril

- prodrugs, converted to their active metabolites in liver
- have long half-life \& given once daily.

ACE Inhibitors

Adverse effects:
1- acute renal failure, especially in patients with renal artery stenosis

2- hyperkalemia, especially in patients with renal insufficiency or diabetes

3- severe hypotension in hypovolemic patients
(due to diuretics, salt restriction or gastrointestinal fluid loss).

ACE Inhibitors

Adverse effects:

4- dry cough sometimes with wheezing

5- angioneurotic edema (swelling in the nose, throat, tongue, larynx)

6- dysgeusia (reversible loss or altered taste).

ACE Inhibitors

Contraindications:

- during the second \& third trimesters of pregnancy
(due to the risk of : fetal hypotension renal failure \& malformations)
- renal artery stenosis.

III- Drugs that decrease both preload \& afterload

2- Angiotensin receptor blockers (ARBs) :

Losartan, Valsartan, Irbesartan

Mechanism of action:

- block AT 1 receptors
- decrease action of angiotensin II

III- Drugs that decrease both preload \& afterload

3- $\alpha-A D R E N O C E P T O R$ BLOCKERS :

Prazosin

- blocks α - receptors in arterioles and venules
- decrease both afterload \& preload

III- Drugs that decrease both preload \& afterload

4- Direct acting vasodilators:

Sodium nitroprusside

- given I.V. for acute or severe heart failure
- acts immediately and effects lasts for 1-5 min.

IV- Drugs that increase contractility 1-Cardiac glycosides (digitalis):

Digoxin

-increases the force of myocardial contraction (+ve inotropic effect)
Mechanism of action :

- Inhibit $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase enzyme
(the sodium pump)

MECHANISM OF ACTION OF DIGOXIN

IV- Drugs that increase contractility

1- Cardiac glycosides (digitalis) :

Digoxin

Therapeutic uses:

- Congestive heart failure
- has narrow therapeutic index

1- Cardiac glycosides (digitalis) : Digoxin

Adverse effects (Cardiac):

- digitalis-induced arrhythmias
- extrasystoles
- coupled beats (Bigeminal rhythm)
- ventricular tachycardia or fibrillation
- cardiac arrest

Bigeminal PVC's: every other beat is a PVC.

IV- Drugs that increase contractility

 1- Cardiac glycosides (digitalis):
Digoxin

Adverse effects (non-cardiac):
GIT:
anorexia, nausea, vomiting, diarrhea
CNS:
headache, visual disturbances, drowsiness.

IV- Drugs that increase contractility 1- Cardiac glycosides (digitalis) : Digoxin

Factors that increase its toxicity:

- Renal diseases
- Hypokalemia
- Hypomagnesemia
- Hypercalemia

IV- Drugs that increase contractility

2- β-Adrenoceptor agonists:

Dobutamine

- Selective β_{1} agonist
- Uses : Treatment of acute heart failure in cardiogenic shock

IV- Drugs that increase contractility

 3- phosphodiesterase -III inhibitors: Milrinone
Mechanism of action:

Inhibits phosphodiesterase -III (cardiac \& B. Vessels)

Increase cardiac
Contractility
dilatation of arteries \& veins
(reduction of preload \& afterload)

IV- Drugs that increase contractility 3- phosphodiesterase -III inhibitors :

 Milrinone

 Milrinone}

Therapeutic uses:

- used only IV for management of

acute heart failure

- not safe or effective in the longer (> 48 hours) treatment of patients with heart failure

IV- Drugs that increase contractility 3- phosphodiesterase -III inhibitors : Milrinone

Adverse effects:

- Hypotension and chest pain (angina)

Chemical interaction:

- furosemide should not be administered in I.V. lines containing milrinone due to formation of a precipitate
- Enoximone \& Vesnarinone new drugs in clinical trials.

The use of β-adrenoceptor blockers in heart failure

- The elevated adrenergic activity in chronic heart failure patients cause structural remodeling of the heart (cardiac dilatation \& hypertrophy)
β-blockers:
- reduce the progression of chronic heart failure
- not used in acute heart failure.

The use of β-adrenoceptor blockers in heart failure

Mechanism of action of β-blockers in HF:
1- attenuate cardiac remodeling
2- slow heart rate, which allows the left ventricle to fill more completely
3- decrease renin release
reduce mortality \& morbidity of patients with HF

The use of β-adrenoceptor blockers in heart failure

- Second generation:
cardioselective (β_{1}-receptors)
e.g. Bisoprolol, Metoprolol
- Third generation:
have vasodilator actions (α - blocking effect)
e.g. Carvedilol, Nebivolol.

New drugs for heart failure

1- Natriuretic Peptides:

Nesiritide

- BNP is secreted by the ventricles in response to stretch
- elevated BNP is associated with advanced heart failure (compensatory mechanism in HF)

Cardiac distension
Sympathetic stimulation
Angiotensin Il
Endothelin

Natriuretic Peptides

Nesiritide

- a purified preparation of human BNP, manufactured by recombinant DNA technology
- \uparrow cyclic-GMP in vascular smooth muscle, leading to smooth muscle relaxation \& reduction of preload and afterload
- indicated (IV) for the treatment of patients with acute decompensated heart failure (ADHF) who have dyspnea at rest or with minimal activity.

New drugs for heart failure

2- Calcium sensitisers:

Levosimendan

- used in the management of ADHF

New drugs for heart failure
 Levosimendan

mechanism of action:

- Calcium sensitization
(improves cardiac contractility without increasing oxygen consumption)
- potassium-ATP channel opening
(cause vasodilation, improving blood flow to vital organs)
These effects reduce the risk of worsening ADHF or death compared with dobutamine.

Management of chronic heart failure

> Reduce work load of the heart

- Limit patient activity
- Reduce weight
- Control hypertension
> Restrict sodium
> Stop smoking.

Heart Failure Functional Classification

NYHA
 Class

Symptoms

Cardiac disease, but no symptoms \& no limitation in ordinary physical activity, e.g. no shortness of breath when walking, climbing stairs etc

Mild symptoms (mild shortness of breath \&/or angina), slight limitation during ordinary activity

Marked limitation in activity due to symptoms, even during less-than-ordinary activity, e.g. walking short distances (20-100 m). Comfortable only at rest

Severe limitations. Experiences symptoms even while at rest. Mostly bedbound patients.

Management of chronic heart failure

	For Survival/Morbidity	For Symptoms
NYHA I	Continue ACE inhibitor/ARB if ACE inhibitor intolerant, continue aldosterone antagonist if post-MI add beta-blocker if post-MI	reduce / stop diuretic
NYHA II	ACE inhibitor as first-line treatment/ARB if ACE inhibitor intolerant add beta-blocker and aldosterone antagonist if post MI	+/- diuretic depending on fluid retention
NYHA III	ACE inhibitor plus ARB or ARB alone if ACE intolerant beta- blocker add aldosterone antagonist	+ diuretics + digitalis If still symptomatic
NYHA IV	Continue ACE inhibitor/ARB beta-blocker Aldosterone antagonist	+diuretics + digitalis + consider temporary inotropic support

Congestive Heart Failure in Black patients

Hydralazine/isosorbide dinitrate fixed dose combination

- FDA approved to add to standard therapy for black Americans with congestive heart failure
(due to poor response to ACE inhibitors)
- should be considered for patients intolerant to ACE inhibitors \& ARBs due to renal dysfunction

Acute decompensated heart failure (ADHF)

A sudden worsening of the signs \& symptoms of heart failure, which typically includes:

- difficulty breathing (dyspnea)
- leg or feet swelling
- fatigue
- ADHF is a common \& potentially serious cause of acute respiratory distress.

Management of acute heart failure

Ultrafiltration: Aqua/natriuresis

Nitrates, nitroprusside, dobutamine: Arterial vasodilation

Bilevel or continuous
positive airway pressure:
Preload reduction

Dobutamine, dopamine, milrinone: Increased inotropy

Nitrates, morphine:
Venodilation

Furosemide:
Natriuresis

Thank you

