

Oxidative Stress

Notes

Editing File

We recommend that to watch this video below to get general idea about this lecture & we suggest this book for you if you want more details

Reactive Oxygen Species and oxidative stress

By Animated biology With arpan

Biochemistry Lippincott Illustrated Reviews 7th Edition

BY Denise R. Ferrier

Chapter 13 Pages 638-665

- ◆ Define oxidative stress.
- ◆ Understand the harmful effects of oxidative stress to the cell and its diseases.
- ◆ List the types, sources and effects of Reactive Oxygen Species (ROS).
- ◆ List various antioxidants in the body.
- ◆ Understand the role of glutathione system in detoxifying oxidants in the body.
- ◆ Discuss how G6PD deficiency leads to oxidative stress.
- ◆ Understand the role of Reactive Nitrogen Species (RNS) in contributing to oxidative stress .
- ◆ Correlate the role of oxidative stress to pathogenesis of atherosclerosis.

- A condition in which cells are exposed to excessive levels of:
 - → Reactive Oxygen Species (ROS) is Formed by the help of oxygen .

Or.

- → Reactive Nitrogen Species (RNS) is formed by the help of Nitrogen .
- Cells are unable to neutralize their deleterious effects with antioxidants.
- Oxidative stress is implicated in atherosclerosis, CAD, ageing.
- Cellular imbalance of oxidants and antioxidants damages: DNA, proteins, lipids.

ROS and RNS are physiologically present but they get removed by antioxidant. If an imbalance occurs it becomes pathological.

Reactive Oxygen Species (ROS)

Oxidation is the **loss** of electrons during a reaction. **Reduction** is the **gain** of electrons during a reaction.

- **Incomplete** reduction of oxygen to water produces ROS.
- **ROS** can damage DNA, proteins, unsaturated lipids → cell death.
- Cells have protective antioxidant mechanisms that neutralize **ROS.**
- ROS are continuously formed :
 - → As byproducts of aerobic metabolism.
 - → Thru reactions with drugs and toxins.
 - → When cellular antioxidant level is low Increase oxidation or Decrease antitoxin.
 - → Creating oxidative stress in cell.

Hydrogen peroxide: Can be converted to H₂O either directly by catalase or indirectly by glutathione peroxidase **Superoxide:** Is converted to 02 by superoxide dismutase.

Types and sources of ROS

- Superoxide dismutase.
- Catalase.
- Glutathione system.

- Vitamins A, C, E.
- beta-Carotene.

Effects of ROS

Glutathione system

- Present in most cells.
- Chemically detoxifies H2O2 (hydrogen peroxide) into water.
- Catalyzed by glutathione reductase.
- Uses NADPH that reduces glutathione which reduces H2O2.

Reduced glutathione (G-SH) consists of: glycine, cysteine, glutamate.

G6PD deficiency

- Leads to NADPH deficiency.
- Cells are unable to reduce free radicals.
- Oxidation of cellular proteins is increased causing impaired cell functions.

حنا قلنا فوق أهمية NADPH وكيف يؤثر على العملية طيب وش المشكلة هنا ؟ الNADPH يجي من انزيم اسمه ANADPH يجي من انزيم اسمه Glucose 6-phosphate dehydrogenase إلى عندهم خلل بهالانزيم Radicle و العملية كلها ما راح تصير ويزيد Radicle و تموت الخلية. طيب ليش خصصنا بس RBCS ما قلنا باقي الخلايا رغم أن النقص على كل أنواع الخلايا؟ باختصار في RBCS ما فيه مصدر ل NADPH غير هالمصدر لأنه ما يصنع طلقة عكس باقي الخلايا اللي عندها مصادر أخرى. طبعا ما عندها إلا هالمصدر ليش؟ Because it does not have a nucleus

Nitric Oxide (NO)

- Endothelial-derived relaxing factor (EDRF).
- Causes vasodilation by relaxing vascular smooth muscle
- Is a **gas** with short half-life (3-10 sec).
 - SHORT HALF LIFE = FAST EFFECT.
 - The short half life indicates fast effect of NO
 - NO + Oxygen/Superoxide Nitrates, Nitrites, **Peroxynitrite** (O=NOO).
 - **Peroxynitrite** is a Reactive Nitrogen Species (RNS).

Synthesis and some of the action of nitric oxide (NO). NADPH = reduced nicotinamide adenine dinucleotide phosphate. [Note: Flavim mononucleotide, flavin adenine dinucleotide, heme, and tetrahydrobiopterin are additional coenzymes required by NOS.]

الثلاث أنو اع

<u>Peroxynitrite</u> لها آثار سلبية زي آثار NO

Nitric oxide synthase

تر میزه لك یا راعي الكورة تستاهل BEIN	<u>e</u> NOS	<u>n</u> NOS	<u>i</u> NOS	<u>b</u> NOS
Location	<u>E</u> ndothelium	<u>N</u> eural tissue	Macrophage, Neutrophils	<u>B</u> acteria
Function All functions are Normal	Vaso-relaxation It is present all the time	Neurotransmission	Infection iNOS activity (normally low) increased by: - Infection Pro-inflammatory cytokines.	-

1-infection
2- pro-inflammatory
cytokines

In increased iNOS activity

Production of **free** radicals

which will lead to oxidative stress

(BAD EFFECT)

Activated macrophages produce O2 or radical + NO

Which will produce > OH● radicals which is highly **bactericidal**

(GOOD EFFECT)

Oxidative Stress And Atherosclerosis

Animation

From 437

- 1. Superoxide, nitric oxide, hydrogen peroxide, or any other oxidant oxidize LDL to oxLDL
- 2. oxLDL binds to scavenger receptors "on the surface of macrophages"
- ☆ Unlike the LDL receptor, the scavenger receptor is not downregulated in response to increased intracellular cholesterol.
- 3. Cholesteryl esters accumulate in macrophages and cause their transformation into "foam" cells
- 4. "foam" cells participate in the formation of atherosclerotic plaque

Take Home Messages

→ Oxidative stress is due to excessive production of ROS and NOS in the cells.

+ Cells neutralize these oxidants by a number of antioxidant processes.

→ Imbalance between oxidants and antioxidants in the cells can result in the development of man diseases including atherosclerosis.

Summary

Click <u>HERE</u>

Or

Scan the code for the amazing summary

Quiz

Q1: Which of the following is an antioxidant Enzyme?

A/ Vitamin C

B/ Glutathione System

C/ Vitamin A

D/ Beta-Carotene

Q4: What's the amino acid required for NO synthesis?

A/L-Arginine

B/ D-Arginine

C/ L-Citrulline

D/ D-Citrulline

Q2: Which of the following is Non-free radical source of ROS?

A/ Superoxide

B/ Hydroxyl radical

C/ Hydrogen peroxide

D/ All of the above

Q5: Which of the following is not an effect of ROS?

A/ DNA damage

B/RNA damage

C/ Protein denature

D/ Chemotaxis

Q3: Which of the following is a disease due to oxidative stress?

A/ Obesity

B/ Cancer

C/ Rheumatoid arthritis

D/ All of the above

Q6: Which of the following is the function of iNOS?

A/ Neurotransmission

B/ Produce ROS

C/ Vasodilation

D/ Infection

Q: What happens if there is cellular imbalance of oxidants and antioxidants? Damage of DNA, protein and lipids

Q: Mention 3 effects of ROS?

Slide 6

Q: What are the 4 types of NO5?

Mnemonic: <u>BEIN</u> sport

eNO5

- ENUS - iNOS

nNOS

