
Revised & Reviewed Abdulaziz & Bahammon Faye Wiel Sandi

Cardiac cycle 1&2

Color Index:

- Main text
- Important
- Girls Slides
- Boys Slides
- Notes
- Extra

Objectives

- Enumerate the phases of cardiac cycle
- Explain the effect of heart rate on duration of systole and diastole
- Recognize the pressure, electrical, sound and volume changes during cardiac cycle
- Correlate different phases of cardiac cycle with various changes in events.
- - Compare and contrast left and right ventricular pressures and volumes during the normal cardiac cycle.
 - Describe atrial pressure waves & their relationship to cardiac cycle

Describe the use of the pressure-volume loop in describing the phases of the cardiac cycle

Some facts to remember

Our heart has its own electrical impulse, it can continue to beat even when separated from the body,

as long as it has an adequate supply of oxygen.

Heart is a double pump (right & left) that work together

◆ It has two circulations: systemic & pulmonary circulation which work together.

Recommended videos

Video

Cardiac cycle - ninja nerd

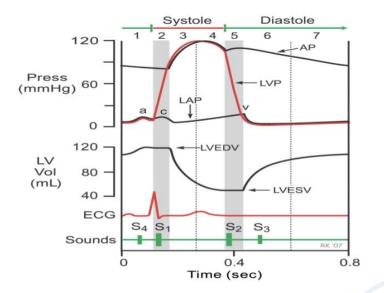
Cardiac cycle - Dr naji

Definitions	Definitions and values are very important
End Diastolic Volume:	Volume of blood in each ventricle at the end of diastole. It is about 110 – 130 ml.
End Systolic Volume:	Volume of blood in each ventricle at the end of Systole. It is about 40 to 60 ml
Stroke Volume:	It is a volume of blood pumped out by each ventricle per beat. It is about 70 ml. Stroke volume (SV) = EDV – ESV
EJECTION FRACTION	(EF) is the percentage of ventricular end diastolic volume (EDV) which is ejected with each stroke <i>(60-65%).</i>
	EF= X 100 EDV
	EF = (75 /120*100=62.5%)

CARDIAC CYCLE

Definition : Cardiac Cycle is the time duration comprising all the events from beginning of one heart contraction to the beginning of next heart contraction.

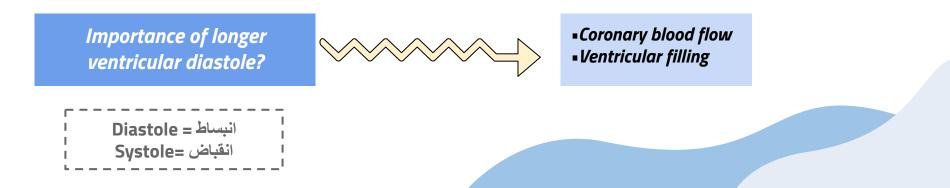
At heart rate of 75 beats per minute duration of one Cardiac cycle is 0.8 second.


What are the Events?

➤Mechanical Events:

- 1. Pressure changes during cardiac cycle
- 2. Volume changes during cardiac cycle
- 3. Heart sounds

> Electrical Events:


Electrocardiogram (ECG)

Phases of the Cardiac cycle 0.8s

ATRIAL DIASTOLE 0.7 SECONDS		ATRIAL SYSTOLE 0.1 SEC	Arterial event
Ventricular systole	Ve	entricular diastole	Ventricular
0.3 seconds		0.5	event

CARDIAC CYCLE 0.8 SECONDS (when HR = 75 beats/min)

EXTRA SLIDE Cardiac Cycle Duration/Time

- ★ Cardiac cycle starts by systole of both atria (0.1 sec), then systole of both ventricles (0.3 sec), then diastole of whole heart
- ★ Diastole of whole heart is 0.4 sec (when ventricles and atria are in diastole at the same time; IVR+Rapid Filling+Half of Reduced Filling)
- ★ Normally, diastole is longer than systole

The 7 Phases of the Cardiac cycle 0.8s

VENTRICULAR SYSTOLE **0.30 sec** (Peak of R wave of QRS complex to the end of T wave)

1.ISO-VOLUMETRIC CONTRACTION 0.05 sec

2.MAXIMUM EJECTION [Duration 1/3] (2/3 or 70% blood is ejected) 0.10 sec

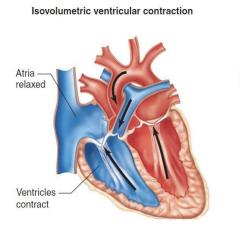
3.REDUCED EJECTION [Duration 2/3] (1/3 or 30% blood is ejected) 0.15 sec

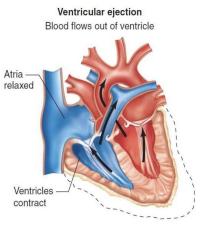
VENTRICULAR DIASTOLE **0.50 sec** (End of T wave to the peak of R wave of QRS complex)

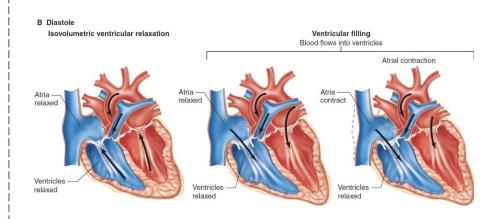
PROTODIASTOLE (the short period in the cardiac cycle between the end of systole and the closure of the aortic valve marking the start of diastole) 0.04 sec

4.ISO-VOLUMETRIC RELAXATION 0.06 sec

5.RAPID INFLOW/RAPID FILLING 0.11 sec


6.SLOW INFLOW/SLOW FILLING / DIASTASIS 0.22 sec


7.ATRIAL SYSTOLE (after P wave) 0.11 sec


7 phase of CARDIAC CYCLE 0.8 sec

Systole

Diastole

AV valves:	Closed	Closed
Aortic and pulmonary valve:	Closed	Open

AV valves:	Closed	Open	Open
Aortic and pulmonary valve:	Closed	Closed	Closed

Mechanical Events	Increase in ventricular pressure when Ventricular pressure > atrial pressure \rightarrow AV valves close After 0.06s, semilunar valves open Period between AV valve closure and semilunar valve opening \rightarrow heart prepares for contraction without shortening \rightarrow occurs without emptying (No change in size \rightarrow hence the isovolumetric \rightarrow No emptying)	Isovolumetric ventricular contraction
Heart sounds	 1st heart sound (S1) heard due to 1- Sudden closure of A-V valves contraction, 2- Vibration of chordae tendinae of papillary muscles. 	Ventricles contract AV valves: Closed Aortic and pulmonary valves: Closed
Ventricular volume	• Tension develops without change in muscle length (Isometric/Isovolumetric)	

Mechanical Events	When Left ventricle pressure > 80 mm Hg Right ventricle pressure > 8 mm Hg, The semilunar valves open. Rapid Ejection : 70% emptying in first 1/3 duration Slow Ejection: 30% in last 2/3 time The pressure in the ventricle keeps decreasing until it becomes lower than that of the great vessels	Ventricular ejection Blood flows out of ventricle
Heart sounds	 No sound 	Closed Open
Ventricular volume	 \$\ge\$ sharply due to shortening of ventricular wall and ejection of blood. 	

VENTRICULAR FILLING

Mechanical Events	 Begins with the opening of AV values <i>Rapid filling</i> first 1/3 of diastole (60-70% blood flows) <i>Reduced filling (Diastasis)</i> middle 1/3 of diastole (<5% blood flows) Atrial contraction last 1/3 of diastole (25 % blood) 	Ventricular filling Blood flows into ventricles Atria elaxed Atria
Heart sounds	_	Ventricles relaxed Open
Ventricular volume	As the atrial pressures fall, the AV valves close and left ventricular <i>volume is now maximum</i> → <i>EDV (120 ml in LV)</i>	Claend

Atrial contraction

Open

atrial pressure changing during cardiac cycle (THE JUGULAR VENOUS PRESSURE)

"A" wave (Atrial systole)	atrial pressure during atrial contraction
"C" wave (ventricular systole)	 Positive as a result of bulging of AV valve into the atria during 'isovolumetric contraction phase'. Negative as a result of pulling of the atrial muscle & AV cusps down during 'rapid ejection phase', resulting in \$\pressure\$
"V" wave (Atrial diastole)	 Positive : atrial pressure ↑ gradually due to continuous VR Negative: as a result of ↓ atrial pressure during 'rapid filling phase'
"X" descent	• Downward displacement of AV valves during 'reduced ejection phase'
"Y" descent	 ↓ atrial pressure during 'reduced filling phase'

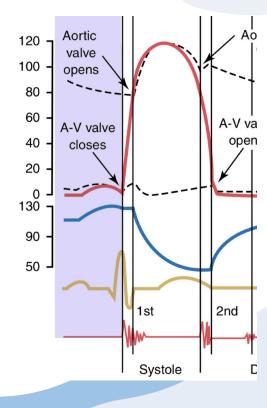
Abnormalities of "a" waves

Elevated a wave (Tricuspid stenosis)

Decreased ventricular compliance (ventricular failure, pulmonic valve stenosis, or pulmonary hypertension)

Cannon "a" wave

- Atrial-ventricular asynchrony (atria contract against a closed tricuspid valve)
- complete heart block, following premature ventricular contraction, during ventricular tachycardia, with ventricular pacemaker


Absent a wave

Atrial fibrillation or atrial standstill (Atrial flutter)

ATRIAL SYSTOLE

Phase of atrial contraction at end of diastole (JVP – 'a' wave) [≈ 0.11 sec]
 Preceded by atrial depolarization

Valves	A-V valves open (semilunar valves closed). blood goes from atria to ventricles.
Ventricular volume	up to 130 ml (EDV) .
Ventricular pressure	First slightly ↑ due to entry of blood from atria. Then ↓ due to dilatation of ventricles. In both cases, it is less than atrial Pressure
Atrial pressure	First ↑ due to systole of atria. Then ↓ due to blood passage into ventricles.
heart sound	4th (S4) Heart sound heard (Vibration of the vent wall during atrial contraction).
ECG	P-wave

ISOVOLUMETRIC CONTRACTION

•Start of ventricular systole [\approx 0.04 sec] & with closure of A-V valves.

Valves	Still closed Aortic valve opens at the end of this phase, when LV exceeds 80mmHg.	120 - Aortic 100 - Valve 토 80 - Dicrotic ng
Ventricular volume	<i>EDV (120 ml)</i> Ventricle contracts with no changes in volume (isometrically, no shortening)	Heart S4 S1
Ventricular pressure	↑ suddenly	sounds Ventricular volume
Atrial pressure	↑ due to doming of cusps of closed A-V valves into atria	Right atrial pressure
heart sound	You will hear first sound S1	Curve (aka J.V.P) ECG
ECG	End of QRS complex	0 0.1 0.2 0.3
JVP	'c'wave \rightarrow due to the bulging of the Tricuspid valve into RA	

Aortic valve closes

Left ventricular pressure

y-descent

S2 S3 **/**_

Mitral valve opens

Dicrotic notch

0.4

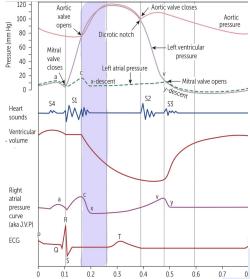
0.5

0.6

0.7

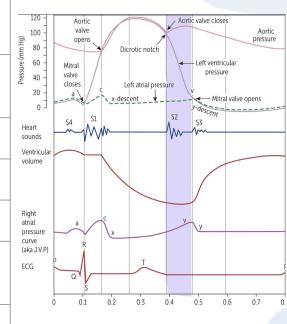
3.0

Left atrial pressure


Aortic pressure

Rapid ejection phase

The ventricles contract isotonically (with shortening) ejecting 75% of stroke volume. Duration:≈0.10sec.


Valves	Semilunar Valves Open At Beginning Of This phase when <i>LV pressure exceeds 80 mmHg.</i> AV valves :Still closed.	120 Aortic 100 valve 9 80 -
Ventricular volume	Decrease	(f) 80 umm 60 umm 40 valve closes 20 a
Ventricular pressure	Increase (reaches 120 mmHg in left Ventricle.)	Heart sounds
Atrial pressure	First increases because when ventricles contract, they pull fibrous AV ring with AV valves downward	Ventricular - volume Right atrial pressure
Aortic pressure	Increase	CULIVE (aka J.V.P) ECG
heart sound	NONE !	0 0.1
ECG	T wave	

Slow Ejection

- •The ventricles contract with lesser force and less blood is ejected (end of systole).
- Almost 25% of Stroke Volume is ejected.
- Duration: ≈ 0.15 sec.

Valves	AV valves: Still closed. Semilunar valves: Still opened.
Ventricular volume	Continue to fall
Ventricular pressure	decreases
Atrial pressure	Still Gradually increase due to venous return.
Aortic pressure	decreases Even at the end of systole pressure in the aorta is maintained at 80-90 mm Hg
heart sound	None.
ECG	T-wave

ISOVOLUMETRIC RELAXATION

- •The ventricles relax at the start of diastole.
- It lasts for ≈ 0.06 sec.

Valves	Semilunar valves: close at the beginning of the phase AV valves: Still closed.	120 Aortic 100 valve 00 opens 01 Mitral 40 valve
Ventricular volume	is constant at the ESV (60 ml).	40 - valve closes c Left atrial p
Ventricular pressure	decrease rapidly	Heart S4 S1
Atrial pressure	Still ↑ gradually due to accumulation of venous blood.	Ventricular volume
Aortic pressure curve	INCISURA : backflow of blood coming across a closed aortic valve	Right atrial pressure curve
heart sound	S2, closure of the semilunar valves	(aka J.V.P) ECG
ECG	T wave	0 0.1 0.2 0.3
JVP	v wave , due to accumulation of venous blood.	

Aortic valve closes

Left ventricular pressure

/-descent

S2 S3

₩~

Mitral valve opens

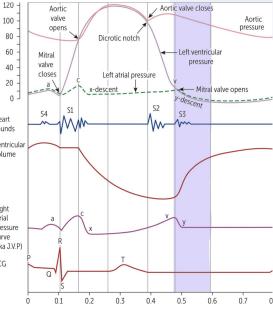
Dicrotic notch

0.4

0.5

0.6

0.7


Left atrial pressure

Aortic pressure

VENTRICULAR FILLING (Rapid filing)

■About 60-70% of blood passes passively to the ventricles [≈ 0.11sec].

		Pressure (mm	
Valves	A-V valves: still open Semilunar valves: Still closed		Mitr valv clos
Ventricular volume	↑because it is being filled with blood.	Heart sounds	
Ventricular pressure	Slightly ↑but < atrial pressure	 Ventricular volume Right 	
Atrial pressure	First sudden↓ due to rush of blood from atria to ventricles. Then gradually ↑due to entry of venous blood.		
heart sound	[S3] due to rush of blood into ventricles and vibration in ventricular wall.		0

(gH r

VENTRICULAR FILLING (Reduced filling)

Remaining atrial blood flows slowly into ventricles by pressure gradient <5%. [≈ 0.22 sec]

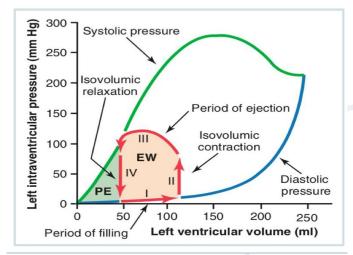
Valves	A-V valves: still open. Semilunar valves: Still closed.	120 - 100 - 윤 80 - Dicrotic notch
Ventricular volume	Still ↑	Bic State Rectify Bic S
Ventricular pressure	Slightly ↑gradually	20 0 Heart sounds Ventricular volume
Atrial pressure	Still ↑	Right atrial pressure a C x y y
ECG	P wave before atrial systole	Curve (aka JV.P) ECG 0 01 02 03 04 0.5 0.6 0.7 0.
JPV	'y' descent in first 2/3 & 'a' wave in last 1/3	

Phase	Ventricular Pressure	Cause	Ventricular Volume
1-Atrial systole	First slightly ↑ Then	Entry of blood from atria dilatation of ventricles	↑(EDV 130ml)
2-Isovolumetric Contraction	↑ Suddenly (80 mmHg)	All valves are closed and contraction is isovolumetric	Constant
3-Maximum Ejection	↑ Sharply (120 mmHg)	Shortening of the ventricular wall and ejection of blood	↓ Rapidly
4-Reduced Ejection	↓ Gradually (80 mmHg))	Volume of blood leaving ventricles > the decrease in ventricular volume	↓ Slowly (ESV 60ml)
5-Isovolumic Relaxation	↓Rapidly	All valves are closed and relaxation is isovolumetric	Constant
6-Rapid Filling	Slightly ↑ but <atrial pressure</atrial 	Entry of blood from atria	↑ Rapidly
7-Reduced filling	Slightly/gradually ↑	Entry of blood from atria	↑ Gradually

HEART SOUNDS & CARDIAC CYCLE

Phase	Heart sound	Cause
1-Atrial systole	4th heart sound	1-contraction of atria 2-blood rush from atria to ventricles
2-Isovolumetric Contraction	1st heart sound	1-sudden closure A-V valves 2-vibration of chordae tendinae of papillary muscles
3-Maximum Ejection	1st heart sound continues	1-contraction of ventricles 2-vibration of walls of aorta & pulmonary artery
4-Reduced Ejection	No sound	
5-Isovolumic Relaxation	2nd heart sound	Sudden closure of semilunar valves
6-Rapid Filling	3rd heart sound	Rush of blood into ventricles and vibration in ventricular wall
7-Reduced filling	No sound	

ECG CHANGES IN CARDIAC CYCLE


Phase	ECG changes		Electro- cardlogram (ECG)	
1-Atrial systole	P-wave starts 0.02sec. before atrial systole Q-wave occurs at the end of this phase	Arrial systole		•
2-Isovolumetric Contraction	Q-wave starts 0.02 sec. before this phase. R & S- waves occur during it	Ventricu systol	complex	100 200
3-Maximum Ejection	T- wave starts at the last part of it.	lar barricular systole	>-	Time (m
4-Reduced Ejection	T-wave continues	Early ventricu		(msec) 500
5-Isovolumic Relaxation	T- wave ends	Ventricula diastole		600
6-Rapid Filling	T-P segment			700
7-Reduced filling	P- wave of the next cycle starts at the end of this phase	Arrial systole	Complex	800

🗘 Left Ventricular Pressure – Volume Diagram (loop)

★ The "volume-pressure diagram" demonstrate the relationship between changes in

intraventricular volume and pressure during the normal cardiac cycle (diastole and systole).

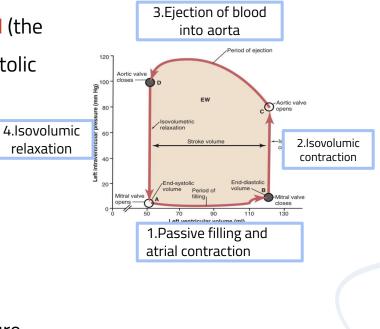
- ★ Can be used to determine EW = net external work and PE = potential energy
- ★ Plots LV pressure against LV volume through one complete cardiac cycle
- ★ It is divided into four phases discussed in the next slide

TEAM439

🔆 Left Ventricular Pressure - Volume Diagram (loop)

Phase 1 (filling phase) (Late diastole):

- Begins at point A where: Ventricular volume is about **70 ml** (the amount of blood that remains in the ventricle, the (ESV) Diastolic


pressure is 2 to 3 mm Hg

- Ends at point B where the ventricular volume normally increases to **140 milliliters** (EDV)

-Stroke volume=EDV-ESV (B-A)

Phase 2 (isovolumic contraction phase):

- The volume of the ventricle does not change.
- Ventricular pressure rises to about 80 mm Hg (point pressure level.C).

THANKS TO

TEAM439

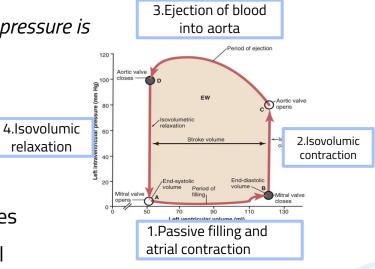
🔆 Left Ventricular Pressure - Volume Diagram (loop)

Phase 3 (Ejection phase):

- Systolic pressure rises (from 80 to 120 mmHg). *Maximum pressure is*

reached during this phase

- The volume of the ventricle decreases because blood


flows out of the ventricle into the aorta.

Phase 4 (isovolumic relaxation phase):

- -at the end of ejection period (point D), the aortic valves closes
- -Ventricular pressure falls back to the diastolic pressure level

-the ventricles return to its starting point (point A)

(all valves closed)

THANKS TO TEAM439

VENTRICULAR PRESSURE - VOLUME LOOP

Increased preload	Increased afterload	Increased contractility	
Tvenous return → increase in SV based on the Frank–Starling relationship it is reflected in increased width of the PV loop.	due to an increase in aortic pressure → decrease in stroke volume it is reflected in decreased width of the PV loop.	increased width & height of the PV loop.	
A Increased preload 4 Left ventricular volume	B Increased afterload 4 Left ventricular volume	C Increased contractility 3 4 4 Left ventricular volume	

Team Leaders Pank Pa

Samiah AlQutub

Team Members

Albandry bin hadba

